
Building Blocks
Operating Systems, Processes, Threads

Outline

• What does an Operating System (OS) do?

• OS types in HPC

• The Command Line

• Processes

• Threads

• Threads on accelerators

• OS performance optimisation

• Why is the OS bad for performance?

• Approaches to improving OS performance

Operating Systems

What do they do? Which ones are used for HPC?

Operating System (OS)

• The OS is responsible for orchestrating access to the

hardware by applications.

• Which applications are running at any one time?

• How is the memory allocated and de-allocated?

• How is the file-system accessed?

• Who has authority to access which resources?

• Running applications are controlled through the concepts

of processes and threads.

• an applications / program is a single process

• which may have multiple threads

OS’s for HPC

• HPC systems have always used Unix
• vendors (DEC, SUN, Cray, IBM, SGI, …) all wrote their own version

• Now dominated by Linux (of various flavours)
• Most HPC vendors modify a commercial Linux distro (RedHat or

SUSe) and tailor to their own system.

• Many commodity clusters run a free Linux distro (Scientific Linux is
particularly popular).

• Only IBM Power systems still use vendor Unix (AIX)
• 11 HPC systems in the November 2013 Top500 do not use Linux

• Windows HPC used on a small number of HPC systems
• 2 HPC systems in the November 2013 Top500 list use Windows

The Command Line

• HPC sector is dominated by Linux

• Interaction almost always through Linux command line.
• e.g. which two files or folders are taking up the most space?

 user@hpcsystem> du –sm * | sort –n | tail -2
• often a reasonably large barrier to new people adopting HPC.

• For any serious use of HPC you will have to learn to use the
command line.
• often also useful for using command line on your own laptop/PC

• Should also learn basic operation of in-terminal text editor

• vi is always available

• emacs is another popular choice

Processes

Processes

• Each application is a separate process in the OS

• a process has its own memory space which is not accessible by other
running process.

• processes are ring-fenced from each other: if web browser crashes, it
can’t scribble over document stored in the memory your word processor

• Each process is scheduled to run by the OS

OS and multicore

• “Multicore parallelism – manually specified by the user”
• what’s the use of a multicore laptop if I run non-parallel code?

• OS’s have always scheduled multiple processes
• regularly check which process is running

• give another process a chance to run for a while

• rapid process switching gives illusion applications run concurrently
even on a single core

• With a multicore processor
• multiple processes can really run at the same time

Process Scheduling

• The OS has responsibility for interrupting a process and granting

the core to another process

• Which process is selected is determined by the scheduling policy

• Interrupt happens at regular intervals (every 0.01seconds is typical)

• Process selected should have processing work to do

• On a quad core processor, OS schedules 4 processes at once

• Some hardware supports multiple processes per core

• Known as Symmetric Multi-threading (SMT)

• Usually appears to the OS as an additional core to use for scheduling

• Process scheduling can be a hindrance to performance

• in HPC, typically want a single user process per core

Threads

Sharing memory

Threads

• For many applications each process has a single thread…

• … but a single process can contain multiple threads

• each thread is like a child process contained within parent process

Threads (cont.)

• All threads in a process have access to the same memory

• the memory of the parent process

• Threads are a useful programming model pre-dating multicore
• e.g. a computer game (a process) creates asynchronous threads

• one thread controls the spaceship

• another controls the missile

• another deals with keyboard input

• …

• but all threads update the same game memory, e.g. the screen

• OS scheduling policy is aware of threads

• ensures all of the game operations progress

• switching between threads usually quicker than between processes

Threads and multicore

• With multiple cores

• multiple threads can operate at the same time on the same data to

speed up applications

• Cannot scale beyond the number of cores managed by the

operating system

• to share memory, threads must belong to the same parent process

• In HPC terms cannot scale beyond a single node

• using multiple nodes requires multiple processes

• this requires inter-process communication – see later

Shared-memory concepts

• Process has an array of size eight

• each thread operates on half the data; potential for 2x speedup

Threads and Accelerators

• The Accelerator programming model generally requires a

huge number of threads to provide efficient usage

• Oversubscription of the accelerator by threads is encouraged

• Hardware supports fast switching of execution of threads

• switch off a thread when it is waiting for data from memory

• switch on a thread that is ready to do computation

• try and hide memory latency

• As GPGPUs can have 1000’s of computing elements,

oversubscription can be difficult!

• Threading is becoming more and more important on

modern HPC machines

OS Optimisation

How do vendors get performance?

Compute node OS

• On the largest supercomputers the compute nodes often

run an optimised OS to improve performance

• Interactive (front-end) nodes usually run a full OS

• How is the OS optimised?

• Remove features that are not needed (e.g. USB support)

• Restrict scheduling flexibility and increase interrupt period

• Bind processes and threads to specific cores

• Remove support for virtual memory (paging)

• …

