High Performance Computing

What is it used for and why?

Overview

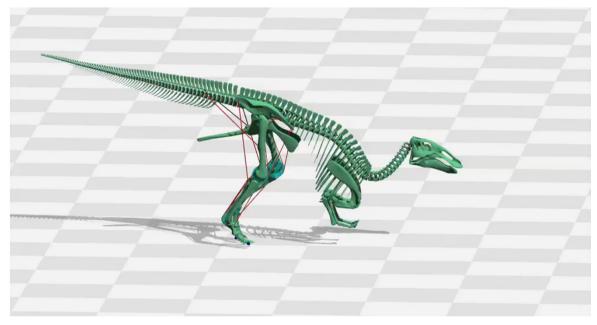
- What is it used for?
 - Drivers for HPC
 - Examples of usage
- Why do you need to learn the basics?
 - Hardware layout and structure matters
 - Serial computing is required for parallel computing
 - Appreciation of fundamentals will help you get more from HPC and scientific computing

What is HPC used for?

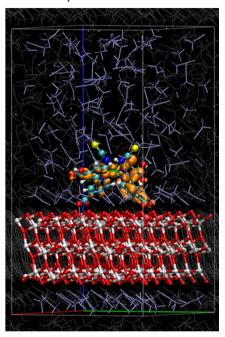
Drivers and examples

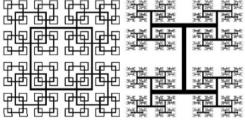
Why HPC?

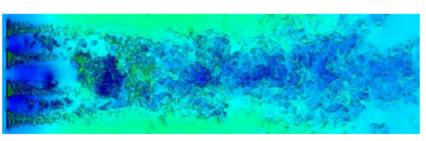
- Scientific simulation and modelling drive the need for greater computing power.
- Single-core processors can not be made that have enough resource for the simulations needed.
 - Making processors with faster clock speeds is difficult due to cost and power/heat limitations
 - Expensive to put huge memory on a single processor
- Solution: parallel computing divide up the work among numerous linked systems.


Generic Parallel Machine

- Good conceptual model is collection of multicore laptops
 - come back to what "multicore" actually means later on ...
- Connected together by a network


- Each laptop is called a compute node
 - each has its own operating system and network connection
- Suppose each node is a quadcore laptop
 - total system has 20 processor-cores




Modelling dinosaur gaits
Dr Bill Sellers, University of Manchester

Dye-sensitised solar cells
F. Schiffmann and J. VandeVondele
University of Zurich

Fractal-based models of turbulent flows Christos Vassilicos & Sylvain Laizet, Imperial College

The Fundamentals

Why do I need to know this?

Parallel Computing

- Parallel computing and HPC are intimately related
 - higher performance requires more processor-cores
- Understanding the different parallel programming models allows you to understand how to use HPC resources effectively

Hardware Layout

- Understanding the different types of HPC hardware allows you to understand why some things are better on one resource than another
- Allows you to choose the appropriate resource for your application
- Allows you to understand the ways to parallelise your serial application
- Gives you an appreciation of the parts that are important for performance

Serial Computing

- Without an understanding of how serial computing operates it is difficult to understand parallel computing
 - What are the factors that matter for serial computation
 - How does the compiler produce executable code?
 - Which bits are automatic and which parts do I have to worry about
 - What can or can't the operating system do for me?

Differences from Desktop Computing

- Do not log on to compute nodes directly
 - submit jobs via a batch scheduling system
- Not a GUI-based environment
- Share the system with many users
- Resources more tightly monitored and controlled
 - disk quotas
 - CPU usage

Differences from Cloud Computing

Performance

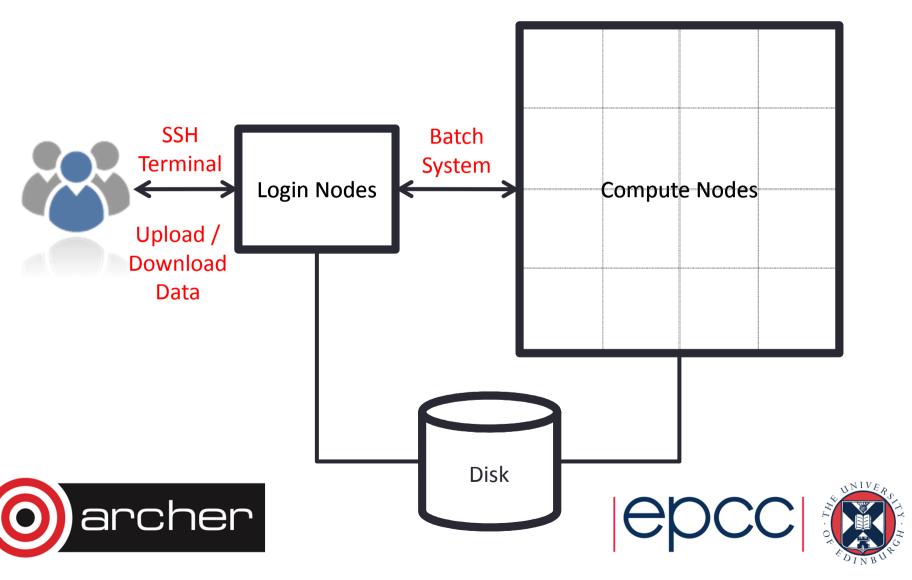
- Clouds usually use virtual machines which add an extra layer of software.
- In cloud you often share hardware resource with other users HPC access is usually exclusive.

Tight-coupling

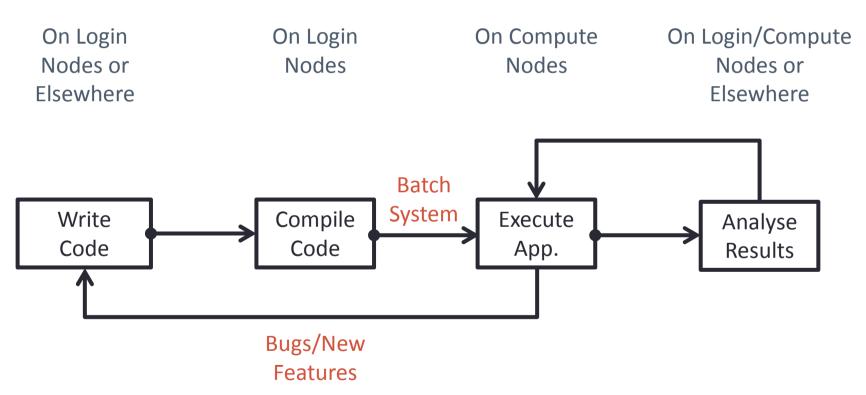
- HPC parallel programming usually assumes that the separate processes are tightly coupled
- Requires a low-latency, high-bandwidth communication system between tasks
- Cloud usually does not usually have this
- Programming models
 - HPC use high-level compiled languages with extensive optimisation.
 - Cloud often based on interpreted/JIT.

What do we mean by "performance"?

- For scientific and technical programming use FLOPS
 - Floating Point OPerations per Second
 - 1.324398404 + 3.6287414 = ?
 - 2.365873534 * 2443.3147 = ?
- Modern supercomputers measured in PFLOPS (PetaFLOPS)
 - Kilo, Mega, Giga, Tera, Peta, Exa = 10³, 10⁶, 10⁹, 10¹², 10¹⁵
- Other disciplines have their own performance measures
 - frames per second, database accesses per second, iops, ...


HPC Layout and Use

Starting concepts



Typical HPC system layout

Typical Software Usage Flow

ARCHER

ARCHER

UK National Supercomputing Service, operated by EPCC

(picture from http://www.heraldscotland.com)

ARCHER in a nutshell

- Peak performance of 1.65 PFLOPS
 - #19 in Nov 2013 world top 500 list; fastest (known) computer in UK
- Designed to provide 3-4 times scientific throughput of HECToR
 - HECToR was #50 in top 500 with 830 TFLOPS
- Cray XC30 Hardware
 - Intel Ivy Bridge processors: 64 (or 128) GB memory; 24 cores per node
 - 3008 nodes (72,192 cores) each running CNL (Compute Node Linux)
 - Linked by Cray Aries interconnect (dragonfly topology)
- Cray Application Development Environment
 - PBS batch system
 - Cray, Intel, GNU Compilers
 - Cray Parallel Libraries
 - DDT Debugger, Cray Performance Analysis Tools

Summary

- High Performance Computing = parallel computing
- Run on multiple processor-cores at the same time
- Typically use fairly standard processors
 - but many thousands of them
- Fast network for inter-processor communications

