NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

ARCHER Performance and
Debugging Tools

Slides contributed by Cray and EPCC

epcc| @

The Porting/Optimisation Cycle

Cray
Performance
Analysis Toolkit
(CrayPAT)

ATP, STAT,
FTD, DDT

NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

Abnormal Termination Processing (ATP)

For when things break unexpectedly...
(Collecting back-trace information)

N A% E
. Ay
N ~7 €
arcnenr i peaq K
8"~ A
) T <
R, &
“OTN®

Debugging in production and scale

Even with the most rigorous testing, bugs may occur during
development or production runs.
It can be very difficult to recreate a crash without additional information
Even worse, for production codes need to be efficient so usually have
debugging disabled
The failing application may have been using tens of or
hundreds of thousands of processes

If a crash occurs one, many, or all of the processes might issue a
signal.

We don’t want the core files from every crashed process, they're slow
and too big!

We don’t want a backirace from every processes, they’re difficult to
comprehend and analyze.

epce

-
ATP Description

Abnormal Termination Processing is a lightweight monitoring
framework that detects crashes and provides more analysis

Designed to be so light weight it can be used all the time with almost no
impact on performance.

Almost completely transparent to the user
Requires atp module loaded during compilation (usually included by default)
Output controlled by the ATP_ENABLED environment variable (set by system).

Tested at scale (tens of thousands of processors)

ATP rationalizes parallel debug information into three easier
to user forms:

A single stack trace of the first failing process to stderr

A visualization of every processes stack trace when it crashed

A selection of representative core files for analysis

epce

e
Usage

Compilation — environment must have module loaded

module load atp

Execution (scripts must explicitly set these if not included by default)

ATP respects ulimits on corefiles. So to see
export ATP_ENABLED=1 corefiles the ulimit must change.
B On crash ATP will produce a selection of
relevant cores files with unique, informative
names.

ulimit -c unlimited
More information (while atp module loaded)

man atp

epcc

NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

Stack Trace Analysis Tool (STAT)

For when nothing appears to be happening...

\}‘\“ 1V E
. Ay
N ~7 €
arcnenr i peaq K
8"~ A
) T <
R, &
“OTN®

T
STAT

Stack Trace Analysis Tool (STAT) is a cross-platform tool from the
University of Wisconsin-Madison.

ATP is based on the same technology as STAT. Both gather and
merge stack traces from a running application’s parallel processes.

It is very useful when application seems to _start
be stuck/hung |
__libe_start main
Full information including use cases is :
available at main
http://www.paradyn.org/STAT/STAT.html |
Scales to many thousands of concurrent func1
process, only limited by number file !
descriptors D
STAT 1.2.1.3 is the default version on Sisu. !
func3
l
func4

[Slelve

2D-Trace/Space Analysis

Aoel

main

10798:[0,3-10799] \18:[133,496,502,...]

MPIDI_CRAY_Progress_wait

t 12]

MPIDI_CRAY _progress

t 12]

MPIDI_CRAY_ptidev_progress

e
Using STAT

Start an interactive job...

module load stat

<launch job script> &

Wait until application hangs:
STAT <pid of aprun>

Kill job

statview STAT results/<exe>/<exe>.0000.dot

epcc

NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

LGDB

Diving in through the command line...

epcc

N
s
~
o}

b

-
lgdb - Command line debugging

LGDB is a line mode parallel debugger for Cray systems
Available through cray-1gdb module
Binaries should be compiled with debugging enabled, e.g. —g. (Or Fast-Track Debugging see later).
The recent 2.0 update has introduced new features. All previous syntax is deprecated

It has many of the features of the standard GDB debugger, but includes extensions for
handling parallel processes.

It can launch jobs, or attach to existing jobs

To launch a new version of <exe>
Launch an interactive session
Run 1gdb
Run launch $pset{nprocs} <exe>
To attach to an existing job
find the <apid> using apstat.
launch 1gdb
run attach $<pset> <apid> from the 1gdb shell.

archer

epCcc

NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

DDT Debugging

Graphical debugging on ARCHER

\3'.\‘1\’&‘
X S
qfv N7 3
arcnenr N pezq B
A7 = B
“ . s
J, Qe
2 Q
OIND®

.
Debugging MPI programs: DDT

Allinea DDT installed on ARCHER

The recommended way to use DDT on ARCHER is to
install the free DDT remote client on your workstation or
laptop and use this to run DDT on ARCHER.

The version of the DDT remote client must match the
version of DDT installed on ARCHER

currently version 4.2.1
http://www.allinea.com/products/downloads/clients

N A% E
. Ay
N ~7 | ¢
~ -
arcnenr 1 e I
A.(? A qf}
DIN®

-
Compiling for debugging

install the source code on the /work filesystem

compile the executable into a location on /work to ensure
that the running job can access all of the required files.

Turn off compiler optimisation and turn on debugging
-0O0 —g

epce

N
3
~
A
o

A

r 8 00 Allinea DDT 4.1-32834
1

File View Control Search Tool; Window Help

Run
Run and debug a program.

Attach
Attach to an already running program.

Open Core
Open a core file from a previous run.

Manual Launch (Advanced)
Manually launch the backend yourself,

Options

Remote Launch:)
[adnanj@login.ardﬁenac.uk il

Quit

Available Tools:

Allinea DDT Support Expires 2017-09-15
« Aliinea MAP Trial Licence (30 Second Time Limit) Sales

Licence Serial Number: 7896 Support Tutorials allinea.com

Allinea DDT 4.1-32834 Connected to: adrianj@login.archer.ac.uk

Allinea DDT 4.1-32834
NIV
,&J\

3 Allinea DDT 4.1-32834 =B X

@ Run (queue submission mode) IM

| Application: /work/z01/z01/adrianj/xthi Details
Application: /work/z01/201/adrianj/xthi v
Arguments: v
stdin file: K=
Working Directory: /work/z01/z01/adrianj/ v

[¥] MPI: 24 processes, 1 node, 24 ppn, Cray XT/XE/XK/XC (MPl/shmem/UP Details

Number of processes: 24 % Number of Nodes: 1 =
\ [v] Processes per Node: 24 >
Implementation: Cray XT/XE/XK/XC (MPI/shmem/UPC/CAF), use queue
aprun arguments v
OpenMP Details
CUDA Details
Memory Debugging Details...

Queue Submission Parameters: Wall Clock Limit=00:10:00, Queue=debu Details...
Environment Variables: none Details

Plugins: none Details

Submit H Cancel

Licence Serial Number: 7896 Support Tutorials allinea.com

Allinea DDT 4.1-32834 Connected to: adrianj@login.archer.ac.uk

epCce

& Allinea DDT 4.1-32834 =B X

= T = B [Ee I A5~

Current Group: ~ |[Focus on current: Group Process Thread Step Threads Together

Create Group
Project Files & X | Locals] Current Line(s) ‘ Current Stack
Current Line(s) g X
s N
@ Job Submitted =
Your job has been submitted to the queue. Allinea DDT will continue automatically once the job has been started.
1I7iTT.san TIEA=IKIGE JEIIIIJO VW Slanuarua
117195.sdb intra6-dog uccatac 0 Q standard i
117197.s8db S3D nhm2el2 00:00:00 R standard
117198.sdb intra7-dog uccatac 0 Q standard
117199.sdb 1200 K.6 eholmstxr 00:00:01 R standazxd
117200.sdb 1200_K.6&5 eholmstr 00:00:05 R standard
117201.sdb 1200 _K.7 eholmstxr 00:00:01 R standard
ol 117202.=sdb 1200_K.75 eholmstr 0 Q standard
117203.sdb 1200_K.8 eholmstr 0 Q standard
117206.s8db tioZ_clean mull gab 0 Q standard
117208.3db mix-3j789 munday 0 Q standard
117210.sdb job dxa 0 Q standard
117211.sdb tio2_clean mull gab 0 Q standard
117212.s8db NEMO-AMME0 kariho40 0 Q standaxd
117214.sdb allinQSMXKg adrianj 00:00:02 E debug
117215.sdb Fe-7250-001 massip 00:00:01 R standard
117216.sdb allintE6évIm adrianj 0 Q debug
117217.sdb xilgy build bdong 0 Q standard
-~
Waiting for job to start...
Input/Output | Breakpoints [Watchpoints | Stacks l- g X
. ' 1 -
Stacks e ———————]

7
Processes Function

Allinea DDT 4.1-32834 Connected to: adrianj@login.archer.ac.uk

@ Allinea DDT 4.1-32834 =B |

File View Control Search Tools Window Help
= 2] & =
Pl:]~_: h T BEELEEIE ! O-O-
Current Group: Focus on current: (@ Group Process Thread Step Threads To

Al @-IZIEIEIIEIII--EI-@E

Create Group

EEEEEE R EEE]

Project Files 8 X £ xthic B Locals Current Line(s) | Current Stack
Search (Ctrl+K £, A Thisfile is newer than your program. Please recompile then restart your debugging session. Current Line(s) 8 x

T wesrtombs.c ~ 37 return(str); ~ | Variable Name Value

i 38 } Large =

¢ 39 +-argv — Ox7fffffff7b8s

H 40 4 int main(int argc, char *argv([])

z 42 int rank, thread:

'c 43 cpu_set t coremask;

- 44 char clbuf(7 * CPU_SETSIZE], hnbuf[64]:

€ 45

© 46 MPI Init(&argc, &argv):

T 47 MPI_ Comm . rank (MPI COMM | WORLD, &rank) ;

3 48 memset (clbuf, 0, sizeof (clbuf)):

L 49 memset (hnbuf, 0, s f (hnbuf));

b 50 (voi o)gethostname (hnbuf, sizeof (hnbuf)): =

z 51 4 $pragma omp p el pr e(thread, coremask, clbuf)

4 [xthi.c 3: .
B cpuset_to_cet 53 thread = omp_get_thread num();
1 mam(i;t a‘rgc 54 (void) sched getaffinity(0, sizeof (coremask), &coremask):
¥ 55 cpuset_to_cstr(&coremask, clbuf);

|« [G 56 #pragma omp barrier " Type: none selected
. Input/Output I Breakpoints] Watchpoints Stacks | Tracepoints [Tracepoint Output l Logbook Evaluate 8 X
Stacks & X | Expression Value

[ra
Processes Function
main (xthi.c:46)

Ready Connected to: adrianj@login.archer.ac.uk

P

-
DDT options

Play: run processes in current group until they are stopped.
Pause: pause processes in current group for examination.

Add Breakpoint: adds a breakpoint at a line of code, or a
function, causing processes to pause when they reach it.

Step Into: step the current process group by a single line or,
If the line involves a function call, into the function instead.

Step Over: steps the current process group by a single line.

Step Out: will run the current process group to the end of
their current function, and return to the calling location.

epce

<
2
B
A
@)
-

Optimise

“

Performance
Analysis Toolkit
(CrayPAT)

\)N 1Ve
< '?J‘,
e CC y 4 -
. = £,
o S T
- h Y Qf’
€DI N Bg

Sampling Event Tracing
Advantages Advantages
* Only need to instrument main * More accurate and more detailed
routine information
« Low Overhead — depends only <+ Data collected from every traced
on sampling frequency function call not statistical averages
« Smaller volumes of data
produced
Disadvantages Disadvantages
« Only statistical averages Increased overheads as number of
available function calls increases
« Limited information from « Huge volumes of data generated

performance counters
The best approach is guided tracing.
e.g. Only tracing functions that are not small (i.e. very few lines of code) and
contribute a lot to application’s run time.
APA is an automated way to do this.

epcc

NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

Automatic Profile Analysis

A two step process to create a guided event trace
binary.

'-\"W[;

9\3 s
z X A
archer ‘ep((:‘ i peeq B

J- =

'5\/)[_\]\),\}

Program Instrumentation - Automatic Profiling Analysis

Automatic profiling analysis (APA)

Provides simple procedure to instrument and collect
performance data as a first step for novice and expert users

|dentifies top time consuming routines

Automatically creates instrumentation template customized to
application for future in-depth measurement and analysis

epcc

N
s
~
~
]
Py

-
Steps to Collecting Performance Data

- Access performance tools software
% module load perftools
- Build application keeping .o files (CCE: -h keepfiles)

% make clean
% make

- Instrument application for automatic profiling analysis
- You should get an instrumented program a.out+pat

) : _ We are telling pat_build that the output of
% pat_build -0 apa—=.out this sample run will be used in an APA run

- Run application to get top time consuming routines

You should get a performance file (“<sdatafile>.xf”) or
muLftlpIeLfllle ?nagﬁectory <sdatac(jir~>)

% aprun .. a.out+pat (or gsub <pat script>)

epcc

Steps to Collecting Performance Data (2)

Generate text report and an .apa instrumentation file

% pat report -o my sampling report [<sdatafile>.xf
p<sd’a’capdir'>] y_>amp g_rep [. xf |

Inspect .apa file and sampling report

Verity if additional instrumentation is needed

epcc

N
s
~
o]

b

Generating Event Traced Profile from APA

Instrument application for further analysis (a.out+apa)
% pat _build -0 <apafile>.apa

Run application

% aprun .. a.out+apa (or qgsub <apa script>)

Generate text report and visualization file (.ap2)

% pat_report -o my text report.txt [<datafile>.xf | <datadir>]

View report in text and/or with Cray Apprentice?

% app2 <datafile>.ap2

epce

N
3
~
o]

A

NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

Analysing Data with
pat report

Using pat_report

Always need to run pat_report at least once to perform data
conversion

Combines information from xf output (optimized for writing to disk) and binary

with raw performance data to produce ap2 file (optimized for visualization
analysis)

Instrumented binary must still exist when data is converted!

Resulting ap?2 file is the input for subsequent pat_report calls and Apprentice?
xf and instrumented binary files can be removed once ap?2 file is generated.

Generates a text report of performance results
Data laid out in tables

Many options for sorting, slicing or dicing data in the tables.
pat_report -0 <table option> *.ap2

pat_report -0 help (list of available profiles)
Volume and type of information depends upon sampling vs tracing.

epcc

-
Job Execution Information

CrayPat/X: Version 6.1.2 Revision 11877 (xf 11595) ©9/27/13 12:00:25
Number of PEs (MPI ranks): 32

Numbers of PEs per Node: 16 PEs on each of 2 Nodes

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Execution start time: Wed Nov 20 15:39:32 2013

System name and speed: mom2 2701 MHz

©)-rcner epcc

I
Sampllng Output Table 2

Samp% | Samp | Imb. | . |Group
| | Samp | Samp% | Function
| | | | Source
| | | | Line
| I | | PE=HIDE
100.0% | 7607.1 | - -- |Total
| ___
| 67.6% | 5139.8 | - -~ |USER
[T,
| 67.5% | 5136.8 | - - | cfd_
3 | | | | training/201312-CSE-EPCC/reggrid/cfd.f
st
4| 1.1% | 85.7 | 31.3 | 27.6% |line.202
4||| 25.0% | 1905.1 | 319.9 | 14.8% |line.204
4||| 12.4% | 943.9 | 329.1 | 26.7% |line.206
4||| 23.5% | 1785.5 | 402.5 | 19.0% |line.216
4|| 4.3% | 324.9 | 134.1 | 30.2% |line.218
| |==
| 31.8% | 2421.7 | - -~ |MPI
[
|| 13.7% | 1038.5 | 315.5 | 24.1% |MPI_SSEND
|| 7.2% | 547.1 | 3554.9 | 89.5% |mpi_recv
|| 7.1% | 540.4 | 3559.6 | 89.6% |MPI_WAIT
|| 3.8% | 290.8 | 319.2 | 54.0% |mpi_finalize

I
pat_report: Flat Profile

Table 1: Profile by Function

Samp% | Samp | Imb. | Imb. |Group
| Samp | Samp% | Function
I I | | PE=HIDE
100.0% | 7607.1 | - -- |Total
67.6% | 5139.8 | - -- |USER

I

| | 1038.5 | 315.5 | 24.1% |MPI_SSEND
| 7.2% | 547.1 | 3554.9 | 89.5% |mpi_recv
I I I I
I I I I

7.1% | 540.4 | 3559.6 | 89.6% |MPI_WAIT
3.8% 290.8 319.2 54.0% |mpi_finalize
S S S S S S S S S S e === Obser‘vations and Suggestions e e e e e e e e e e e e o e e e e e

MPI Grid Detection:
A linear pattern was detected in MPI sent message traffic.

For table of sent message counts, use -0 mpi dest counts.
For table of sent message bytes, use -0 mpi_dest_bytes.

. archenr

pat_report: Hardware Performance Counters

Total

PERF_COUNT_HW CACHE L1D:ACCESS 99236829284
PERF_COUNT_HW CACHE L1D:PREFETCH 1395603690
PERF_COUNT_HW_ CACHE L1D:MISS 5235958322

CPU_CLK _UNHALTED:THREAD P 229602167200

CPU_CLK _UNHALTED:REF_P 7533538184
DTLB_LOAD MISSES:MISS CAUSES A WALK 29102852
DTLB_STORE_MISSES:MISS CAUSES A WALK 6702254

L2 RQSTS:ALL DEMAND DATA RD 3448321934

L2 RQSTS:DEMAND DATA RD HIT 3019403605

User time (approx) 76.128 secs 205620987829 cycles
CPU_CLK 3.048GHz

TLB utilization 2956.80 refs/miss 5.775 avg uses
D1 cache hit,miss ratios 95.1% hits 4.9% misses
D1 cache utilization (misses) 20.22 refs/miss 2.527 avg hits
D2 cache hit,miss ratio 91.8% hits 8.2% misses
D1+D2 cache hit,miss ratio 99.6% hits 0.4% misses
D1+D2 cache utilization 246.83 refs/miss 30.853 avg hits
D2 to D1 bandwidth 2764 .681MB/sec 220692603786 bytes

. archenr

epCcc

Some important options to pat_report -O

callers Profile by Function and Callers

callers+hwpc Profile by Function and Callers

callers+src Profile by Function and Callers, with Line Numbers
callers+src+hwpc Profile by Function and Callers, with Line Numbers
calltree Function Calltree View

heap_hiwater Heap Stats during Main Program

hwpc Program HW Performance Counter Data
load_balance_program+hwpc Load Balance across PEs

load_balance_sm Load Balance with MPI Sent Message Stats
loop_times Loop Stats by Function (from -hprofile_generate)
loops Loop Stats by Inclusive Time (from -hprofile generate)
mpi_callers MPI Message Stats by Caller

profile Profile by Function Group and Function
profile+src+hwpc Profile by Group, Function, and Line

samp_profile Profile by Function

samp_profile+hwpc Profile by Function

samp_profile+src Profile by Group, Function, and Line

For a full list see pat_report -0 help

. archenr

epCcc

