
ARCHER Performance and

Debugging Tools

Slides contributed by Cray and EPCC

Modify

DebugOptimise

The Porting/Optimisation Cycle

ATP, STAT,

FTD, DDT

Cray

Performance

Analysis Toolkit

(CrayPAT)

Debug

ATP, STAT,

FTD,

Totalview

Abnormal Termination Processing (ATP)

For when things break unexpectedly…

(Collecting back-trace information)

Debugging in production and scale

• Even with the most rigorous testing, bugs may occur during
development or production runs.
• It can be very difficult to recreate a crash without additional information

• Even worse, for production codes need to be efficient so usually have
debugging disabled

• The failing application may have been using tens of or
hundreds of thousands of processes
• If a crash occurs one, many, or all of the processes might issue a

signal.

• We don’t want the core files from every crashed process, they’re slow
and too big!

• We don’t want a backtrace from every processes, they’re difficult to
comprehend and analyze.

ATP Description
• Abnormal Termination Processing is a lightweight monitoring

framework that detects crashes and provides more analysis

• Designed to be so light weight it can be used all the time with almost no
impact on performance.

• Almost completely transparent to the user

• Requires atp module loaded during compilation (usually included by default)

• Output controlled by the ATP_ENABLED environment variable (set by system).

• Tested at scale (tens of thousands of processors)

• ATP rationalizes parallel debug information into three easier

to user forms:

1. A single stack trace of the first failing process to stderr

2. A visualization of every processes stack trace when it crashed

3. A selection of representative core files for analysis

Usage

Compilation – environment must have module loaded

module load atp

Execution (scripts must explicitly set these if not included by default)

export ATP_ENABLED=1

ulimit –c unlimited

More information (while atp module loaded)

man atp

ATP respects ulimits on corefiles. So to see

corefiles the ulimit must change.

On crash ATP will produce a selection of

relevant cores files with unique, informative

names.

Stack Trace Analysis Tool (STAT)

For when nothing appears to be happening…

STAT
• Stack Trace Analysis Tool (STAT) is a cross-platform tool from the

University of Wisconsin-Madison.
• ATP is based on the same technology as STAT. Both gather and

merge stack traces from a running application’s parallel processes.
• It is very useful when application seems to

be stuck/hung

• Full information including use cases is
available at
http://www.paradyn.org/STAT/STAT.html

• Scales to many thousands of concurrent
process, only limited by number file
descriptors

• STAT 1.2.1.3 is the default version on Sisu.

2D-Trace/Space Analysis

Appl

Appl

Appl

Appl

Appl

…

Using STAT

Start an interactive job…

module load stat

<launch job script> &

Wait until application hangs:

STAT <pid of aprun>

Kill job

statview STAT_results/<exe>/<exe>.0000.dot

LGDB
Diving in through the command line…

lgdb - Command line debugging

• LGDB is a line mode parallel debugger for Cray systems
• Available through cray-lgdb module

• Binaries should be compiled with debugging enabled, e.g. –g. (Or Fast-Track Debugging see later).

• The recent 2.0 update has introduced new features. All previous syntax is deprecated

• It has many of the features of the standard GDB debugger, but includes extensions for
handling parallel processes.

It can launch jobs, or attach to existing jobs

1. To launch a new version of <exe>
1. Launch an interactive session

2. Run lgdb

3. Run launch $pset{nprocs} <exe>

2. To attach to an existing job
1. find the <apid> using apstat.

2. launch lgdb

3. run attach $<pset> <apid> from the lgdb shell.

DDT Debugging

Graphical debugging on ARCHER

Debugging MPI programs: DDT

• Allinea DDT installed on ARCHER

• The recommended way to use DDT on ARCHER is to

install the free DDT remote client on your workstation or

laptop and use this to run DDT on ARCHER.

• The version of the DDT remote client must match the

version of DDT installed on ARCHER

• currently version 4.2.1

• http://www.allinea.com/products/downloads/clients

Compiling for debugging

• install the source code on the /work filesystem

• compile the executable into a location on /work to ensure

that the running job can access all of the required files.

• Turn off compiler optimisation and turn on debugging

• -O0 –g

Remote client

• Install the remote client and run it:

• Configure Remote Launch
• Hostname: username@login.archer.ac.uk

• Installation Directory: /opt/cray/ddt/4.0.1.0_32296

• Configure job submission
• Click “Options”

• Choose “Job Submission”

• Change submission template to:

• /home/y07/y07/cse/allinea/templates/archer_phase1.qtf

• Including “Edit Queue Submission Parameters…” (can also be done at run
time)
• Change time limit if required

• Add budget code

DDT options

• Play: run processes in current group until they are stopped.

• Pause: pause processes in current group for examination.

• Add Breakpoint: adds a breakpoint at a line of code, or a

function, causing processes to pause when they reach it.

• Step Into: step the current process group by a single line or,

if the line involves a function call, into the function instead.

• Step Over: steps the current process group by a single line.

• Step Out: will run the current process group to the end of

their current function, and return to the calling location.

Optimise

Cray

Performance

Analysis Toolkit

(CrayPAT)

Sampling

Advantages
• Only need to instrument main

routine
• Low Overhead – depends only

on sampling frequency
• Smaller volumes of data

produced
Disadvantages
• Only statistical averages

available
• Limited information from

performance counters

Event Tracing

Advantages
• More accurate and more detailed

information
• Data collected from every traced

function call not statistical averages

Disadvantages
• Increased overheads as number of

function calls increases
• Huge volumes of data generated

The best approach is guided tracing.

e.g. Only tracing functions that are not small (i.e. very few lines of code) and

contribute a lot to application’s run time.
APA is an automated way to do this.

Automatic Profile Analysis

A two step process to create a guided event trace
binary.

Program Instrumentation - Automatic Profiling Analysis

• Automatic profiling analysis (APA)

• Provides simple procedure to instrument and collect

performance data as a first step for novice and expert users

• Identifies top time consuming routines

• Automatically creates instrumentation template customized to

application for future in-depth measurement and analysis

Steps to Collecting Performance Data

• Access performance tools software

% module load perftools

• Build application keeping .o files (CCE: -h keepfiles)

% make clean
% make

• Instrument application for automatic profiling analysis
• You should get an instrumented program a.out+pat

% pat_build –O apa a.out

• Run application to get top time consuming routines
• You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

% aprun … a.out+pat (or qsub <pat script>)

We are telling pat_build that the output of

this sample run will be used in an APA run

Steps to Collecting Performance Data (2)

• Generate text report and an .apa instrumentation file

% pat_report –o my_sampling_report [<sdatafile>.xf |
<sdatadir>]

• Inspect .apa file and sampling report

• Verify if additional instrumentation is needed

Generating Event Traced Profile from APA

• Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

• Run application

% aprun … a.out+apa (or qsub <apa script>)

• Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf | <datadir>]

• View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

Analysing Data with
pat_report

Using pat_report
• Always need to run pat_report at least once to perform data

conversion
• Combines information from xf output (optimized for writing to disk) and binary

with raw performance data to produce ap2 file (optimized for visualization
analysis)

• Instrumented binary must still exist when data is converted!

• Resulting ap2 file is the input for subsequent pat_report calls and Apprentice2

• xf and instrumented binary files can be removed once ap2 file is generated.

• Generates a text report of performance results
• Data laid out in tables

• Many options for sorting, slicing or dicing data in the tables.
• pat_report –O <table option> *.ap2

• pat_report –O help (list of available profiles)

• Volume and type of information depends upon sampling vs tracing.

Job Execution Information

CrayPat/X: Version 6.1.2 Revision 11877 (xf 11595) 09/27/13 12:00:25

Number of PEs (MPI ranks): 32

Numbers of PEs per Node: 16 PEs on each of 2 Nodes

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Execution start time: Wed Nov 20 15:39:32 2013

System name and speed: mom2 2701 MHz

Sampling Output (Table 2)
Samp% | Samp | Imb. | Imb. |Group

| | Samp | Samp% | Function
| | | | Source
| | | | Line
| | | | PE=HIDE

100.0% | 7607.1 | -- | -- |Total
|---
| 67.6% | 5139.8 | -- | -- |USER
||--
| 67.5% | 5136.8 | -- | -- | cfd_
3 | | | | training/201312-CSE-EPCC/reggrid/cfd.f
||||--
4||| 1.1% | 85.7 | 31.3 | 27.6% |line.202
4||| 25.0% | 1905.1 | 319.9 | 14.8% |line.204
4||| 12.4% | 943.9 | 329.1 | 26.7% |line.206
4||| 23.5% | 1785.5 | 402.5 | 19.0% |line.216
4||| 4.3% | 324.9 | 134.1 | 30.2% |line.218
||||==
||==
| 31.8% | 2421.7 | -- | -- |MPI
||--
|| 13.7% | 1038.5 | 315.5 | 24.1% |MPI_SSEND
|| 7.2% | 547.1 | 3554.9 | 89.5% |mpi_recv
|| 7.1% | 540.4 | 3559.6 | 89.6% |MPI_WAIT
|| 3.8% | 290.8 | 319.2 | 54.0% |mpi_finalize

|===

pat_report: Flat Profile
Table 1: Profile by Function

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 7607.1 | -- | -- |Total
|---
| 67.6% | 5139.8 | -- | -- |USER
||--
| 67.5% | 5136.8 | 1076.2 | 17.9% | cfd_
||==
| 31.8% | 2421.7 | -- | -- |MPI
||--
|| 13.7% | 1038.5 | 315.5 | 24.1% |MPI_SSEND
|| 7.2% | 547.1 | 3554.9 | 89.5% |mpi_recv
|| 7.1% | 540.4 | 3559.6 | 89.6% |MPI_WAIT
|| 3.8% | 290.8 | 319.2 | 54.0% |mpi_finalize
|===
================ Observations and suggestions ========================

MPI Grid Detection:

A linear pattern was detected in MPI sent message traffic.
For table of sent message counts, use -O mpi_dest_counts.
For table of sent message bytes, use -O mpi_dest_bytes.

===

pat_report: Hardware Performance Counters
==

Total
--

PERF_COUNT_HW_CACHE_L1D:ACCESS 99236829284
PERF_COUNT_HW_CACHE_L1D:PREFETCH 1395603690
PERF_COUNT_HW_CACHE_L1D:MISS 5235958322
CPU_CLK_UNHALTED:THREAD_P 229602167200
CPU_CLK_UNHALTED:REF_P 7533538184
DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 29102852
DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 6702254
L2_RQSTS:ALL_DEMAND_DATA_RD 3448321934
L2_RQSTS:DEMAND_DATA_RD_HIT 3019403605
User time (approx) 76.128 secs 205620987829 cycles
CPU_CLK 3.048GHz
TLB utilization 2956.80 refs/miss 5.775 avg uses
D1 cache hit,miss ratios 95.1% hits 4.9% misses
D1 cache utilization (misses) 20.22 refs/miss 2.527 avg hits
D2 cache hit,miss ratio 91.8% hits 8.2% misses
D1+D2 cache hit,miss ratio 99.6% hits 0.4% misses
D1+D2 cache utilization 246.83 refs/miss 30.853 avg hits
D2 to D1 bandwidth 2764.681MB/sec 220692603786 bytes

Some important options to pat_report -O

callers Profile by Function and Callers

callers+hwpc Profile by Function and Callers

callers+src Profile by Function and Callers, with Line Numbers

callers+src+hwpc Profile by Function and Callers, with Line Numbers

calltree Function Calltree View

heap_hiwater Heap Stats during Main Program

hwpc Program HW Performance Counter Data

load_balance_program+hwpc Load Balance across PEs

load_balance_sm Load Balance with MPI Sent Message Stats

loop_times Loop Stats by Function (from -hprofile_generate)

loops Loop Stats by Inclusive Time (from -hprofile_generate)

mpi_callers MPI Message Stats by Caller

profile Profile by Function Group and Function

profile+src+hwpc Profile by Group, Function, and Line

samp_profile Profile by Function

samp_profile+hwpc Profile by Function

samp_profile+src Profile by Group, Function, and Line

For a full list see pat_report –O help

