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Cray XC30 Intel® Xeon® Compute Node
The XC30 Compute node 
features:

• 2 x Intel® Xeon® 
Sockets/die
• 12 core Ivy Bridge

• QPI interconnect

• 2.7 GHz (3.5 GHz)

• Forms 2 NUMA nodes

• 8 x 1833MHz DDR3
• 8 GB per Channel

• 64/128 GB total

• 1 x Aries NIC
• Connects to shared Aries 

router and wider network

• PCI-e 3.0
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Intel® Xeon® Ivybridge 12-core socket/die
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Intel® Xeon® Ivybridge Core Structure
• 256 bit AVX 

Instructions (4 
double precision 
floating point)
• 1 x Add

• 1 x Multiply

• 1 x Other

• 2 Hardware 
threads 
(Hyperthreads)

• Peak DP FP per 
node 
8FLOPS/clock
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Hyper-threading
• Hyper-threading (or Simultaneous multithreading (SMT)) tries 

to fill these spare slots by mixing instructions from more than 

one thread in the same clock cycle.

• Requires some replication of hardware

• instruction pointer, instruction TLB, register rename logic, etc.

• Intel Xeon only requires about 5% extra chip area to support SMT

• ...but everything else is shared between threads

• functional units, register file, memory system (including caches)

• sharing of caches means there is no coherency problem

• For most architectures, two or four threads is all that makes 

sense



Hyper-threading example

TimeTime

Two threads on two coresTwo threads on two cores
Two threads on one SMT coreTwo threads on one SMT core



More on Hyper-threading

• How successful is hyper-threading? 

• depends on the application, and how the 2 threads contend for the 
shared resources.

• In practice, gains seem to be limited to around 1.2 to 1.3 times 
speedup over a single thread.
• benefits will be limited if both threads are using the same functional units 

(e.g. FPUs) intensively.

• For memory intensive code, hyper-threading can cause slow 
down
• caches are not thread-aware

• when two threads share the same caches, each will cause evictions of 
data belonging to the other thread.



Hyper-threading example performance
• XC30 

• Sandy-bridge (8 cores)

Effects of Hyper-Threading on the NERSC workload on Edison http://www.nersc.gov/assets/CUG13HTpaper.pdf

• NAMD• VASP



• GTC• NWChem

• Quantum Espresso



SIMD Vector Operations
• Same operation on multiple data items

• Wide registers

• SIMD needed to approach FLOP peak performance, but your code must 
be capable of vectorisation

• x86 SIMD instruction sets: 

• SSE: register width = 128 Bit 

• 2 double precision floating point operands 

• AVX: register width = 256 Bit

• 4 double precision floating point operands 

256 bit

+

+

+

+

SIMD 
instruction

256 bit

64 bit +

Serial 
instruction

for(i=0;i<N;i++){

a[i] = b[i] + c[i]

}

do i=1,N

a(i) = b(i) + c(i)

end do



Intel AVX
4x double

8x float

32x byte

16x short

4x integer32

2x integer64

● +, – , * gives 2x w.r.t. SSE; / and sqrt same performance 



When does the compiler vectorize

• What can be vectorized 
• Only loops

• Usually only one loop is vectorizable in loopnest
• And most compilers only consider inner loop

• Optimising compilers will use vector instructions
• Relies on code being vectorizable
• Or in a form that the compiler can convert to be vectorizable

• Some compilers are better at this than others

• Check the compiler output listing and/or assembler listing
• Look for packed AVX instructions



Helping vectorization
• Is there a good reason for this? 

• There is an overhead in setting up vectorization; maybe it's not worth it
• Could you unroll inner (or outer) loop to provide more work?

• Does the loop have dependencies?
• information carried between iterations

• e.g. counter: total = total + a(i)

• No:
• Tell the compiler that it is safe to vectorize

• !dir$ IVDEP or #pragma ivdep directive above loop (CCE, but works with most compilers)
• C99: restrict keyword (or compile with -hrestrict=a with CCE)

• Yes:
• Rewrite code to use algorithm without dependencies, e.g.

• promote loop scalars to vectors (single dimension array)
• use calculated values (based on loop index) rather than iterated counters, e.g.

• Replace: count = count + 2; a(count) = ...

• By: a(2*i) = ...

• move if statements outside the inner loop
• may need temporary vectors to do this (otherwise use masking operations)

• If you need to do too much extra work to vectorize, may not be worth it.



Let's consider a non-vectorizable loop
16.  + 1-------<   do j = 1,N

17.    1 x = xinit

18.  + 1 r4----<     do i = 1,N

19.    1 r4 x = x + vexpr(i,j)

20.    1 r4 y(i) = y(i) + x

21.    1 r4---->     end do

22.    1------->   end do

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16 

A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18 

A loop starting at line 18 was unrolled 4 times.

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18

A loop starting at line 18 was not vectorized because a recurrence was found on "x" at line 19.

1.497ms 

For more info, type:
explain ftn-6254

Look further down for associated messages



Now make a small modification
38.    Vf------<   do i = 1,N

39.    Vf x(i) = xinit

40.    Vf------>   end do

41.              

42.    ir4-----<   do j = 1,N

43.    ir4 if--<     do i = 1,N

44.    ir4 if x(i) = x(i) + vexpr(i,j)

45.    ir4 if y(i) = y(i) + x(i)

46.    ir4 if-->     end do

47.    ir4----->   end do
ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42 

A loop starting at line 42 was interchanged with the loop starting at line 43.

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43 

A loop starting at line 43 was fused with the loop starting at line 38.

ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38 

A loop starting at line 38 was vectorized.

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42 

A loop starting at line 42 was vectorized as part of the loop starting at line 38.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42 

A loop starting at line 42 was unrolled 4 times.

1.089ms 

-37%

N.B. outer loop 
vectorization here

x promoted to vector:

• trade slightly more memory
• for better performance



When does the Cray Compiler vectorize?
• The Cray compiler will only vectorize loops

• Constant strides are best, indirect addressing is bad
• Scatter/gather operations (not implemented in AVX)

• Can vectorize across inlined functions
• Needs to know loop tripcount (but only at runtime)

• do/while loops should be avoided

• No recursion allowed
• if you have this, consider rewriting the loop

• If you can't vectorize the entire loop, consider splitting it
• so as much of the loop is vectorized as possible

• Always check the compiler output  to see what it did
• CCE: -hlist=a

• Intel: -vec-report[0..5]
• GNU: -ftree-vectorizer-verbose=1

• or (for the hard core) check the assembler generated

• Clues from CrayPAT's HWPC measurements
• export PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP
• Complicated, but look for ratio of operations/instructions > 1

• expect 4 for pure AVX with double precision floats



Intel TurboBoost
• Operating frequency of Processor can change

• 2.7 GHz base frequency

• 3.5 GHz maximum frequency

• Increments of 0.1 GHz

• E5-2697v2
• Turbo modes: 3/3/3/3/3/3/3/4/5/6/7/8

• 6-12 cores active, maximum frequency 3.0 GHz

• 0.1 GHz increase for each core not active above this

• System automatically changes, based on:
• Number of active cores

• Estimated current consumption

• Estimated power consumption

• Processor temperature



Glossary of Cray terminology

PE/Processing Element
• A discrete software process with an individual address space. One PE is 

equivalent  to1 MPI Rank, 1 Coarray Image, 1 UPC Thread, or 1 SHMEM PE

Threads
• A logically separate stream of execution inside a parent PE that shares the 

same address space

CPU
• The minimum piece of hardware capable of running a PE. It may share some 

or all of its hardware resources with other CPUs
Equivalent to a single “Intel Hyperthread”

Compute Unit
• The individual unit of hardware for processing, may be seen described as a 

“core”.



Running applications on the Cray XC30:  Some basic examples

Assuming an XC30 node with 12 core Ivybridge processors
• Each node has: 48 CPUs/Hyperthreads and 24 Compute Units/cores

• Launching a basic MPI application:
• Job has 1024 total ranks/PEs, using 1 CPU per Compute Unit meaning a maximum of 24 

PEs per node.

#PBS -l select=43

$ aprun –n 1024 –N 24 –j1 ./a.out

• To launch the same MPI application but spread over twice as many nodes
#PBS -l select=86

$ aprun –n 1024 –N 12 –j1 ./a.out

• Can be used to increase the available memory for each PE

• To use all availble CPUs on a single node 
• (maximum now 48 PEs per node)

#PBS -l select=22

$ aprun –n 1024 –N 48 –j2 ./a.out



Default Binding - CPU
• By default aprun will bind each PE to a single CPU for the 

duration of the run.

• This prevents PEs moving between CPUs.

• All child processes of the PE are bound to the same CPU

• PEs are assigned to CPUs on the node in increasing order 
from 0. e.g. 

aprun –n 48 –N 24 –j1 a.out
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NUMA nodes and CPU binding (pt 1)
• Care has to be taken when under-populating node (running fewer PEs 

than available CPUs). E.g.

• The default binding will bind all PEs to CPUs in the first NUMA node of 
each node.

• This will unnecessarily push all memory traffic through only one die’s 
memory controller. Artificially limiting memory bandwidth.

aprun –n 24 –N 12 –j1 a.out
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NUMA nodes and CPU binding (pt 2)
• The -S <PEs> flag tells aprun to distribute that many PEs to each 

NUMA node, thus evening the load.

• PEs will be assigned to CPUs in the NUMA node in the standard 
order, e.g. 0-5 & 12-17. However all CPUs within a NUMA node are 
essentially identical so there are no additional imbalance problems.

aprun –n 24 –N 12 –S 6 –j1 a.out
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Strict Memory Containment
• Each XC30 node is an shared 

memory device. 

• By default all memory is placed 
on the NUMA node of the first 
CPU to “touch” it.

• However, it may be beneficial to 
setup strict memory 
containment between NUMA 
nodes.

• This prevents PEs from one 
NUMA node allocating memory 
on another NUMA node.

• This has been shown to 
improve performance in some 
applications.

aprun –ss –n 48 –N 12\

–S 6 a.out
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Ignore Hyperthreads “-j1” Single Stream Mode
All examples up to now have assumed “-j1” or “Single Stream Mode”.

In this mode, aprun binds PEs and ranks to the 24 Compute Units  (e.g. 
only use CPUs 0-23)
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Include Hyperthreads “-j2” Dual Stream Mode

Specifying “-j2” in aprun assigns PEs to all of the 48 CPUs available. However 
CPUs that share a common Compute Unit are assigned consecutively

This means threads will share Compute Units with default binding
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Summary
• ARCHER Nodes

• 2 x 12-core Intel Xeon Ivy-Bridge processors

• 64 GB Memory

• General multi-core issues same as any other general HPC 
system around at the moment

• Hyperthreading is supported and may increase performance

• But may not, so watch this space or try for yourselves

• On core vectorisation (AVX) needed for maximum performance

• Generally compiler will do this but…

• …can help the compiler and check what it’s doing

• Controlling process binding can be beneficial

• Generally, plain MPI jobs easy, but other things can be achieved


