NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

ARCHER Processors

Slides contributed from Cray and EPCC

\}N 1V Ez?
- ::IQ " ‘ ’//
arcne i piiq B
NN :
R, &
(/), N \,’\}

Cray XC30 Intel® Xeon® Compute Node

’——————————————————§

~~~ pPCle 3.0

N~ Aries NIC  jiuimialiaiie ——————

Aries
Router

archer

Network

The XC30 Compute node
features:

- 2 X Intel® Xeon®

Sockets/die

- 12 core lvy Bridge

- QPI interconnect

- 2.7 GHz (3.5 GHz)

- Forms 2 NUMA nodes

- 8 x 1833MHz DDR3

- 8 GB per Channel
- 64/128 GB total

-1 x Aries NIC

- Connects to shared Aries
router and wider network

- PCl-e 3.0




Intel® Xeon® Ivib |de 12 Core socket/dle

4 x 1866 MHz
DDR3 Channels

7

—

/ \
/ \

! DDR3 Memory Controller /\‘/ Socket/die
| |
| |

Ring bus : :
| |
| |
| |
| |
| |
| |
| |

Quick Path 1 ! External 1/0

: '/ (Aries)
|

Interconnect
(inter die) \

System PCle-3.0

PG|

&
<
~




e
Intel® Xeon® Ivybridge Core Structure

Core - 256 bit AVX
32KB 11 (8-Way) Instructions (4
Fetch dout?le precision
floating point)
Decode - 1xAdd
- 1 x Multiply
Scheduler - 1 x Other

- 2 Hardware
ALU @ ALU | ALU @ LSU threads

AVX | AVX | AVX (Hyperthreads)
Add Mul | Shuf

30MB Shared L3 (16-Way)
256KB L2 (8-Way)

- Peak DP FP per
node
32KB D1(8-Way) 8FLOPS/clock

epCccC

NIV
NS = /?J‘

<
Ry
~
o
<

CH . )\L\

g
DINBQ



e
Hyper-threading

Hyper-threading (or Simultaneous multithreading (SMT)) tries
to fill these spare slots by mixing instructions from more than
one thread in the same clock cycle.

Requires some replication of hardware

instruction pointer, instruction TLB, register rename logic, etc.
Intel Xeon only requires about 5% extra chip area to support SMT

...but everything else is shared between threads

functional units, register file, memory system (including caches)
sharing of caches means there is no coherency problem

For most architectures, two or four threads is all that makes
sense

epcc




-
Hyper-threading example

Time

Two threads on two cores
Two threads on one SMT core

%\3"\‘“"?&!,\

> N7 3

archer i DEq B
] A feul

e - &

g X

€1)iN\%\}\




e
More on Hyper-threading

How successful is hyper-threading?
depends on the application, and how the 2 threads contend for the
shared resources.

In practice, gains seem to be limited to around 1.2 to 1.3 times

speedup over a single thread.
benefits will be limited if both threads are using the same functional units
(e.g. FPUs) intensively.
For memory intensive code, hyper-threading can cause slow
down
caches are not thread-aware

when two threads share the same caches, each will cause evictions of
data belonging to the other thread.

epce




Hyper-threading example performance

- XC30
- Sandy-bridge (8 cores)
- VASP - NAMD

140/ Il Single Stream 500" Bl Single Stream
B Double Stream I Double Stream
450
120
400
100 350
) < 300
o 80 ®
E E 250
= =
60 200
40 150!
100
OL - i " b " A i 0
1 2 4 8
The number of nodes The number of nodes

Effects of Hyper-Threading on the NERSC workload on Edison http://www.nersc.gov/assets/CUG13HTpaper.pdf

©)archer SPCC|:




- NWChem - GTC

800 Il Single Stream Il Single Stream
B Double Stream 500! I Double Stream
700
600 400
@ 500! @
® o 300
£ 400 E
= =
300 200/
200/
100!
1 |
“ 0 |- 4 L 1 . .
0 1 2 4 8 16 32 64 128 256
The number of nodes The number of nodes

- Quantum Espresso
800

B single Stream —1 Threads
BN Dual Stream -2 Threads




I
SIMD Vector Operations

Same operation on multiple data items
Wide registers
SIMD needed to approach FLOP peak performance, but your code must

be capable of vectorisation for (i=0;i<N;i++) {
x86 SIMD instruction sets: ali]l = b[i] + c[i]
SSE: register width = 128 Bit }
2 double precision floating point operands 9o i=1,N
AVX: register width = 256 Bit a(i) = b(i) + c(3)
4 double precision floating point operands end do
64 bit — + SIMD +
— instruction
+
256 bit — 256 bit —
n
@ Serial
instruction B +




I
Intel AVX

128 bit : 128 bit 4x double

8x float

32x byte

16X short

4x integer32

N
X
-
—
D
Q
Q)
=
(@))
AN

Lane O

Lane 1

° +,—, " gives 2x w.r.t. §SE; / and sqrt same performance

epcc @




-
When does the compiler vectorize

What can be vectorized
Only loops

Usually only one loop is vectorizable in loopnest
And most compilers only consider inner loop

Optimising compilers will use vector instructions
Relies on code being vectorizable

Or in a form that the compiler can convert to be vectorizable
Some compilers are better at this than others

Check the compiler output listing and/or assembiler listing
Look for packed AVX instructions

epce




-
Helping vectorization

|s there a good reason for this?

There is an overhead in setting up vectorization; maybe it's not worth it
Could you unroll inner (or outer) loop to provide more work?

Does the loop have dependencies?

information carried between iterations
e.g. counter: total = total + a(i)

No:

Tell the compiler that it is safe to vectorize
Idir$ IVDEP or #pragma ivdep directive above loop (CCE, but works with most compilers)
C99: restrict keyword (or compile with -hrestrict=a with CCE)

Yes:
Rewrite code to use algorithm without dependencies, e.g.
promote loop scalars to vectors (single dimension array)

use calculated values (based on loop index) rather than iterated counters, e.g.
Replace: count = count + 2; a(count) = ...
By: a(2*i) = ...

move if statements outside the inner loop
may need temporary vectors to do this (otherwise use masking operations)

If you need to do too much extra work to vectorize, may not be worth it.

©)orcner epcc




e
Let's consider a non-vectorizable loop

16. +€d====---< do j = 1,N

Look further down for associated messages

17. 1 X = Xxinit

18. + 1 rd4----< do i = 1,N

19. 1r4 X = X + vexpr(i,j)
20. 1r4 y(i) = y(i) + x
21. 1 r4----> end do

22. 1------- > end do

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16

A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18
A loop starting at line 18 was unrolled 4 times.
ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18

A loop startin [ne 18 was not vectorized because a recurrence was found on "x" at line 19.

For more info, type: ‘ epCC

explain ftn-6254




-
Now make a small modification

8. VE-oeee- < doi=1,N" x promoted to vector:
Z;: xi ______ R en;((;g - xantee - trade slightly more memory
a1. « for better performance
42. ir4----- < do j = 1,N
43. ird if--< do i =1,N
44 . ird if x(i) = x(i) + vexpr(i,j)
45. ird if y(i) = y(i) + x(i) 1.089ms
46. ird if--> end do ~
47 . ird-----> end do ‘
ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42 379,

A loop starting at line 42 was interchanged with the loop starting at line 43.
ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43

A loop starting at line 43 was fused with the loop starting at line 38.
ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38

A loop starting at line 38 was vectorized.
ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42 <

N.B. outer loop
vectorization here

epCcc

A loop starting at line 42 was vectorized as part of the loop starting at line 38.
ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42

A loop starting at line 42 was unrolled 4 times.

archer




When does the Cray Compiler vectorize?

The Cray compiler will only vectorize loops

Constant strides are best, indirect addressing is bad
Scatter/gather operations (not implemented in AVX)

Can vectorize across inlined functions

Needs to know loop tripcount (but only at runtime)
do/while loops should be avoided

No recursion allowed
if you have this, consider rewriting the loop

If you can't vectorize the entire loop, consider splitting it
so as much of the loop is vectorized as possible

Always check the compiler output to see what it did

CCE: -hlist=a
Intel: -vec-report[0..5]
GNU: -ftree-vectorizer-verbose=1

or (for the hard core) check the assembler generated

Clues from CrayPAT's HWPC measurements
export PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP
Complicated, but look for ratio of operations/instructions > 1
expect 4 for pure AVX with double precision floats

archenr cSOCC




e
Intel TurboBoost

Operating frequency of Processor can change
2.7 GHz base frequency
3.5 GHz maximum frequency
Increments of 0.1 GHz
E5-2697v2
Turbo modes: 3/3/3/3/3/3/3/4/5/6/7/8
6-12 cores active, maximum frequency 3.0 GHz
0.1 GHz increase for each core not active above this
System automatically changes, based on:
Number of active cores
Estimated current consumption
Estimated power consumption
Processor temperature

epcc




Glossary of Cray terminology

PE/Processing Element

A discrete software process with an individual address space. One PE is
equivalent to1 MPI Rank, 1 Coarray Image, 1 UPC Thread, or 1 SHMEM PE

Threads

A logically separate stream of execution inside a parent PE that shares the
same address space

CPU

The minimum piece of hardware capable of running a PE. It may share some
or all of its hardware resources with other CPUs
Equivalent to a single “Intel Hyperthread”

Compute Unit

The individual unit of hardware for processing, may be seen described as a
“core”.

epcc




Running applications on the Cray XC30: Some basic examples

Assuming an XC30 node with 12 core lvybridge processors
Each node has: 48 CPUs/Hyperthreads and 24 Compute Units/cores

Launching a basic MPI application:

Job has 1024 total ranks/PEs, using 1 CPU per Compute Unit meaning a maximum of 24
PEs per node.

#PBS -1 select=43
$ aprun -n 1024 -N 24 -j1 ./a.out

To launch the same MPI application but spread over twice as many nodes
#PBS -1 select=86

$ aprun -n 1024 -N 12 -j1 ./a.out
Can be used to increase the available memory for each PE

To use all availble CPUs on a single node
(maximum now 48 PEs per node)
#PBS -1 select=22

$ aprun -n 1024 -N 48 -3j2 ./a.out

epcc




Default Binding - CPU

- By default aprun will bind each PE to a single CPU for the
duration of the run.

- This prevents PEs moving between CPUs.
- All child processes of the PE are bound to the same CPU

- PEs are assigned to CPUs on the node in increasing order
from 0. e.q. 1 Software PE

tPU Node 1




NUMA nodes and CPU binding (pt 1)

- Care has to be taken when under-populating node (running fewer PEs
than available CPUs). E.g.

aprun -n 24 -N 12 -jl1 a.out

- The default binding will bind all PEs to CPUs in the first NUMA node of
each node.

- This will unnecessarily push all memory traffic through only one die’s
memory controller. Artificially limiting memory bandwidth.

epcc




NUMA nodes and CPU binding (pt 2)

- The -S <PEs> flag tells aprun to distribute that many PEs to each
NUMA node, thus evening the load.

aprun -n 24 -N 12 -S 6 -jl1 a.out

- PEs will be assigned to CPUs in the NUMA node in the standard
order, e.g. 0-5 & 12-17. However all CPUs within a NUMA node are
essentially identical so there are no additional imbalance problems.




Strlct Memory Containment

g EEE N I S B B B B EEE B EEE EEe EEE BaE Bae EEm B Bae B B Eew oy

- o o o o o .y, - o e e o o oy,

'/ NUMA Node 0 ° ‘" NUMA Node 1

=1 | =R

— o . o O S S S DS S D B B S B Eee .

\

/
7

-

-_eem e e e o o o o o O O S e S e B B e e

Each XC30 node is an shared
memory device.

By default all memory is placed
on the NUMA node of the first
CPU to “touch” it.

However, it may be beneficial to
setup strict memory
containment between NUMA
nodes.

This prevents PEs from one
NUMA node allocating memory
on another NUMA node.

This has been shown to
improve performance in some
applications.

aprun -ss -n 48 -N 12\

-S 6 a.out

epCcC:




e
lgnore Hyperthreads “-j1” Single Stream Mode

All examples up to now have assumed “-j1” or “Single Stream Mode”.
In this mode, aprun binds PEs and ranks to the 24 Compute Units (e.g.

only use CPUs 0-23) Hyperthread
______________________________________ - pair /
/"NUMA Node 0 Gompute
| Unit
o G
I
I
|
\
CPUs 24-47

NUMA Node V' Ignored

I
|
I
I
|
I
I




e
Include Hyperthreads “-j2” Dual Stream Mode

Specifying “-j2” in aprun assigns PEs to all of the 48 CPUs available. However
CPUs that share a common Compute Unit are assigned consecutively  Hyperthread

e e . pair /
NUMA Node 0 Compute
5 ) Unit

/
I
I
|
I
I
|

-~

NUMA Node 1

< | 13 I A0 501601701180 19020021 22
AR IR AR VAR YR YR V4R iR YR V4R W,
\ /

Th|s means threads will share Compute Units with default binding

epcc| |

/
|
I
I
|
I
I




Summary

ARCHER Nodes
2 x 12-core Intel Xeon Ivy-Bridge processors
64 GB Memory
General multi-core issues same as any other general HPC
system around at the moment
Hyperthreading is supported and may increase performance
But may not, so watch this space or try for yourselves
On core vectorisation (AVX) needed for maximum performance
Generally compiler will do this but...
...can help the compiler and check what it's doing
Controlling process binding can be beneficial
Generally, plain MPI jobs easy, but other things can be achieved

epce




