
ARCHER Processors

Slides contributed from Cray and EPCC

Cray XC30 Intel® Xeon® Compute Node
The XC30 Compute node
features:

• 2 x Intel® Xeon®
Sockets/die
• 12 core Ivy Bridge

• QPI interconnect

• 2.7 GHz (3.5 GHz)

• Forms 2 NUMA nodes

• 8 x 1833MHz DDR3
• 8 GB per Channel

• 64/128 GB total

• 1 x Aries NIC
• Connects to shared Aries

router and wider network

• PCI-e 3.0

Cray XC30 Compute Node

NUMA Node 1NUMA Node 0

Intel®
Xeon®

12 Core die

Aries
Router

Intel®
Xeon®

12 Core die

Aries NIC

32GB 32GB

PCIe 3.0

Aries
Network

QPI

DDR3

Intel® Xeon® Ivybridge 12-core socket/die

DDR3 Memory Controller

Core

Core

Core

Core

Core

Core

Shared
L3 Cache

Core

Core

Core

Core

Core

Core

QPI PCIe-3.0System

8GB 8GB 8GB 8GB

Socket/die

Quick Path
Interconnect

(inter die)

External I/O
(Aries)

Ring bus

4 x 1866 MHz
DDR3 Channels

Intel® Xeon® Ivybridge Core Structure
• 256 bit AVX

Instructions (4
double precision
floating point)
• 1 x Add

• 1 x Multiply

• 1 x Other

• 2 Hardware
threads
(Hyperthreads)

• Peak DP FP per
node
8FLOPS/clock

Core

32KB D1(8-Way)

32KB I1 (8-Way)

2
5
6
K

B
 L

2
 (

8
-W

a
y)

Fetch

Decode

Scheduler

LSU LSUALUALUALU

AVX
Add

AVX
Mul

AVX
Shuf3

0
M

B
 S

h
a
re

d
 L

3
 (

1
6
-W

a
y)

Hyper-threading
• Hyper-threading (or Simultaneous multithreading (SMT)) tries

to fill these spare slots by mixing instructions from more than

one thread in the same clock cycle.

• Requires some replication of hardware

• instruction pointer, instruction TLB, register rename logic, etc.

• Intel Xeon only requires about 5% extra chip area to support SMT

• ...but everything else is shared between threads

• functional units, register file, memory system (including caches)

• sharing of caches means there is no coherency problem

• For most architectures, two or four threads is all that makes

sense

Hyper-threading example

TimeTime

Two threads on two coresTwo threads on two cores
Two threads on one SMT coreTwo threads on one SMT core

More on Hyper-threading

• How successful is hyper-threading?

• depends on the application, and how the 2 threads contend for the
shared resources.

• In practice, gains seem to be limited to around 1.2 to 1.3 times
speedup over a single thread.
• benefits will be limited if both threads are using the same functional units

(e.g. FPUs) intensively.

• For memory intensive code, hyper-threading can cause slow
down
• caches are not thread-aware

• when two threads share the same caches, each will cause evictions of
data belonging to the other thread.

Hyper-threading example performance
• XC30

• Sandy-bridge (8 cores)

Effects of Hyper-Threading on the NERSC workload on Edison http://www.nersc.gov/assets/CUG13HTpaper.pdf

• NAMD• VASP

• GTC• NWChem

• Quantum Espresso

SIMD Vector Operations
• Same operation on multiple data items

• Wide registers

• SIMD needed to approach FLOP peak performance, but your code must
be capable of vectorisation

• x86 SIMD instruction sets:

• SSE: register width = 128 Bit

• 2 double precision floating point operands

• AVX: register width = 256 Bit

• 4 double precision floating point operands

256 bit

+

+

+

+

SIMD
instruction

256 bit

64 bit +

Serial
instruction

for(i=0;i<N;i++){

a[i] = b[i] + c[i]

}

do i=1,N

a(i) = b(i) + c(i)

end do

Intel AVX
4x double

8x float

32x byte

16x short

4x integer32

2x integer64

● +, – , * gives 2x w.r.t. SSE; / and sqrt same performance

When does the compiler vectorize

• What can be vectorized
• Only loops

• Usually only one loop is vectorizable in loopnest
• And most compilers only consider inner loop

• Optimising compilers will use vector instructions
• Relies on code being vectorizable
• Or in a form that the compiler can convert to be vectorizable

• Some compilers are better at this than others

• Check the compiler output listing and/or assembler listing
• Look for packed AVX instructions

Helping vectorization
• Is there a good reason for this?

• There is an overhead in setting up vectorization; maybe it's not worth it
• Could you unroll inner (or outer) loop to provide more work?

• Does the loop have dependencies?
• information carried between iterations

• e.g. counter: total = total + a(i)

• No:
• Tell the compiler that it is safe to vectorize

• !dir$ IVDEP or #pragma ivdep directive above loop (CCE, but works with most compilers)
• C99: restrict keyword (or compile with -hrestrict=a with CCE)

• Yes:
• Rewrite code to use algorithm without dependencies, e.g.

• promote loop scalars to vectors (single dimension array)
• use calculated values (based on loop index) rather than iterated counters, e.g.

• Replace: count = count + 2; a(count) = ...

• By: a(2*i) = ...

• move if statements outside the inner loop
• may need temporary vectors to do this (otherwise use masking operations)

• If you need to do too much extra work to vectorize, may not be worth it.

Let's consider a non-vectorizable loop
16. + 1-------< do j = 1,N

17. 1 x = xinit

18. + 1 r4----< do i = 1,N

19. 1 r4 x = x + vexpr(i,j)

20. 1 r4 y(i) = y(i) + x

21. 1 r4----> end do

22. 1-------> end do

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16

A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18

A loop starting at line 18 was unrolled 4 times.

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18

A loop starting at line 18 was not vectorized because a recurrence was found on "x" at line 19.

1.497ms

For more info, type:
explain ftn-6254

Look further down for associated messages

Now make a small modification
38. Vf------< do i = 1,N

39. Vf x(i) = xinit

40. Vf------> end do

41.

42. ir4-----< do j = 1,N

43. ir4 if--< do i = 1,N

44. ir4 if x(i) = x(i) + vexpr(i,j)

45. ir4 if y(i) = y(i) + x(i)

46. ir4 if--> end do

47. ir4-----> end do
ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42

A loop starting at line 42 was interchanged with the loop starting at line 43.

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43

A loop starting at line 43 was fused with the loop starting at line 38.

ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38

A loop starting at line 38 was vectorized.

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42

A loop starting at line 42 was vectorized as part of the loop starting at line 38.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42

A loop starting at line 42 was unrolled 4 times.

1.089ms

-37%

N.B. outer loop
vectorization here

x promoted to vector:

• trade slightly more memory
• for better performance

When does the Cray Compiler vectorize?
• The Cray compiler will only vectorize loops

• Constant strides are best, indirect addressing is bad
• Scatter/gather operations (not implemented in AVX)

• Can vectorize across inlined functions
• Needs to know loop tripcount (but only at runtime)

• do/while loops should be avoided

• No recursion allowed
• if you have this, consider rewriting the loop

• If you can't vectorize the entire loop, consider splitting it
• so as much of the loop is vectorized as possible

• Always check the compiler output to see what it did
• CCE: -hlist=a

• Intel: -vec-report[0..5]
• GNU: -ftree-vectorizer-verbose=1

• or (for the hard core) check the assembler generated

• Clues from CrayPAT's HWPC measurements
• export PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP
• Complicated, but look for ratio of operations/instructions > 1

• expect 4 for pure AVX with double precision floats

Intel TurboBoost
• Operating frequency of Processor can change

• 2.7 GHz base frequency

• 3.5 GHz maximum frequency

• Increments of 0.1 GHz

• E5-2697v2
• Turbo modes: 3/3/3/3/3/3/3/4/5/6/7/8

• 6-12 cores active, maximum frequency 3.0 GHz

• 0.1 GHz increase for each core not active above this

• System automatically changes, based on:
• Number of active cores

• Estimated current consumption

• Estimated power consumption

• Processor temperature

Glossary of Cray terminology

PE/Processing Element
• A discrete software process with an individual address space. One PE is

equivalent to1 MPI Rank, 1 Coarray Image, 1 UPC Thread, or 1 SHMEM PE

Threads
• A logically separate stream of execution inside a parent PE that shares the

same address space

CPU
• The minimum piece of hardware capable of running a PE. It may share some

or all of its hardware resources with other CPUs
Equivalent to a single “Intel Hyperthread”

Compute Unit
• The individual unit of hardware for processing, may be seen described as a

“core”.

Running applications on the Cray XC30: Some basic examples

Assuming an XC30 node with 12 core Ivybridge processors
• Each node has: 48 CPUs/Hyperthreads and 24 Compute Units/cores

• Launching a basic MPI application:
• Job has 1024 total ranks/PEs, using 1 CPU per Compute Unit meaning a maximum of 24

PEs per node.

#PBS -l select=43

$ aprun –n 1024 –N 24 –j1 ./a.out

• To launch the same MPI application but spread over twice as many nodes
#PBS -l select=86

$ aprun –n 1024 –N 12 –j1 ./a.out

• Can be used to increase the available memory for each PE

• To use all availble CPUs on a single node
• (maximum now 48 PEs per node)

#PBS -l select=22

$ aprun –n 1024 –N 48 –j2 ./a.out

Default Binding - CPU
• By default aprun will bind each PE to a single CPU for the

duration of the run.

• This prevents PEs moving between CPUs.

• All child processes of the PE are bound to the same CPU

• PEs are assigned to CPUs on the node in increasing order
from 0. e.g.

aprun –n 48 –N 24 –j1 a.out

0

0

1

1

2

2

23

23…

0

24

1

25

2

26

23

47…

Node 1Node 0

1 Software PE
is bound to

1 Hardware CPU

NUMA nodes and CPU binding (pt 1)
• Care has to be taken when under-populating node (running fewer PEs

than available CPUs). E.g.

• The default binding will bind all PEs to CPUs in the first NUMA node of
each node.

• This will unnecessarily push all memory traffic through only one die’s
memory controller. Artificially limiting memory bandwidth.

aprun –n 24 –N 12 –j1 a.out

0

0

11

…

Node 0

11

NUMA Node 0

12 23

…

NUMA Node 1

0

12

11

…

Node 1

23

NUMA Node 0

12 23

…

NUMA Node 1

NUMA nodes and CPU binding (pt 2)
• The -S <PEs> flag tells aprun to distribute that many PEs to each

NUMA node, thus evening the load.

• PEs will be assigned to CPUs in the NUMA node in the standard
order, e.g. 0-5 & 12-17. However all CPUs within a NUMA node are
essentially identical so there are no additional imbalance problems.

aprun –n 24 –N 12 –S 6 –j1 a.out

0

0

11

…

Node 0

NUMA Node 0

12 23

…

NUMA Node 1

0

12

11

…

Node 1

NUMA Node 0

12 23

…

NUMA Node 1

6 18

Strict Memory Containment
• Each XC30 node is an shared

memory device.

• By default all memory is placed
on the NUMA node of the first
CPU to “touch” it.

• However, it may be beneficial to
setup strict memory
containment between NUMA
nodes.

• This prevents PEs from one
NUMA node allocating memory
on another NUMA node.

• This has been shown to
improve performance in some
applications.

aprun –ss –n 48 –N 12\

–S 6 a.out

Cray XC30 Compute Node

NUMA Node 1NUMA Node 0

Intel® Xeon®
12 Core die

Intel® Xeon®
12 Core die

Aries NIC

32GB 32GB

PCIe 3.0

QPI

DDR3

X

Ignore Hyperthreads “-j1” Single Stream Mode
All examples up to now have assumed “-j1” or “Single Stream Mode”.

In this mode, aprun binds PEs and ranks to the 24 Compute Units (e.g.
only use CPUs 0-23)

24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

NUMA Node 0

CPUs 24-47
Ignored

Hyperthread
pair /

Compute
Unit

32

8

33

9

34

10

35

11

36 37 38 39 40 41 42 43

12 13 14 15 16 17 18 19

NUMA Node 1

44

20

45

21

46

22

47

23

Include Hyperthreads “-j2” Dual Stream Mode

Specifying “-j2” in aprun assigns PEs to all of the 48 CPUs available. However
CPUs that share a common Compute Unit are assigned consecutively

This means threads will share Compute Units with default binding

24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

NUMA Node 0

32

8

33

9

34

10

35

11

36 37 38 39 40 41 42 43

12 13 14 15 16 17 18 19

NUMA Node 1

44

20

45

21

46

22

47

23

Hyperthread
pair /

Compute
Unit

Summary
• ARCHER Nodes

• 2 x 12-core Intel Xeon Ivy-Bridge processors

• 64 GB Memory

• General multi-core issues same as any other general HPC
system around at the moment

• Hyperthreading is supported and may increase performance

• But may not, so watch this space or try for yourselves

• On core vectorisation (AVX) needed for maximum performance

• Generally compiler will do this but…

• …can help the compiler and check what it’s doing

• Controlling process binding can be beneficial

• Generally, plain MPI jobs easy, but other things can be achieved

