
Sharpen Exercise: Using HPC resources and
running parallel applications

Contents

1 Aims 2

2 Introduction 2

3 Instructions 3
3.1 Log into ARCHER frontend nodes and run commands 3
3.2 Download and extract the exercise files 3
3.3 Compile the source code to produce an executable file 4
3.4 Running a job . 5

3.4.1 Write the PBS job script 6
3.4.2 Submit the script to the PBS job submission system . 7
3.4.3 Monitoring/deleting your batch job 7
3.4.4 Finding the output . 8

3.5 Submit an interactive job and wait for it to start 8
3.6 Run the parallel executable on a compute node 10
3.7 Viewing the images . 11
3.8 Additional Exercises . 11

4 Appendix 12
4.1 Detailed Login Instructions 12

4.1.1 Procedure for Mac and Linux users 12
4.1.2 Procedure for Windows users 12

4.2 Running commands . 12
4.3 Using the Emacs text editor 13
4.4 Useful commands for examining files 14

1

1 Aims

The aim of this exercise is to get you used to logging into the ARCHER
resource, using the command line and an editor to manipulate files, and
using the batch submission system.

In this exercise we will be using ARCHER. ARCHER is a Cray XC30
system with a total of 72,192 cores. Although the overall software environ-
ment should be familiar to existing users of the HECToR Cray XE6 system,
there are several important differences between ARCHER and HECToR.
For example, ARCHER uses 12-core 2.7GHz Intel E5-2697 v2 (Ivy Bridge)
series processors as opposed to HECToR’s 16-core 2.3GHz AMD Opteron
(Interlagos) processors. The network is the new Cray Aries interconnect,
and ARCHER now supports the Intel compiler suite.

You can find more details on ARCHER and how to use it in the User
Guide at:

• http://www.archer.ac.uk/documentation/user-guide/

2 Introduction

In this exercise you will run a simple MPI parallel program to sharpen the
provided image.

Using your provided guest account, you will:

1. log onto the ARCHER frontend nodes;

2. copy the source code from a central location to your account;

3. unpack the source code archive;

4. compile the source code to produce an executable file;

5. submit a parallel job using the PBS batch system;

6. run the parallel executable on a compute node using a varying number
of processors and examine the performance difference.

7. submit an interactive job.

Demonstrators will be on hand to help you as required. Please do ask
questions if you do not understand anything in the instructions - this is what
the demonstrators are here for.

2

http://www.archer.ac.uk/documentation/user-guide/

3 Instructions

3.1 Log into ARCHER frontend nodes and run commands

You should have been given a guest account ID – referred to generically here
as guestXX and password. (If you have not, please contact a demonstrator.)

These credentials can be used to access ARCHER by connecting to

ssh -X guestXX@login.archer.ac.uk

with the SSH client of your choice (-X ensures that graphics are routed
back to your desktop). Once you have successfully logged in you will be
presented with an interactive command prompt.

For more detailed instructions on connecting to ARCHER, or on how to
run commands, please see the Appendix.

3.2 Download and extract the exercise files

Firstly, change directory to make sure you are on the “/work” filesystem on
ARCHER.

guestXX@archer:~> cd /work/y14/y14/guestXX/

/work is a high performance parallel file system that can be accessed by
both the frontend and compute nodes. All jobs on ARCHER should be
run from the /work filesystem. ARCHER compute nodes cannot access
the /home filesystem at all. Any jobs attempting to use /home will fail with
an error.

Use wget (on ARCHER) to get the exercise files archive from the EPCC
webserver:

guestXX@archer:~> wget tinyurl.com/archer030914/Exercises/sharpen.tar.gz
--2013-11-24 13:55:18-- http://tinyurl.com/archer030914/Exercises/sharpen.tar.gz
Resolving tinyurl.com... 195.66.135.249, 195.66.135.241, 195.66.135.248
Connecting to tinyurl.com|195.66.135.249|:80... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: http://www2.epcc.ed.ac.uk/~adrianj/archer030914/Exercises/sharpen.tar.gz [following]
--2013-11-24 13:55:18-- http://www2.epcc.ed.ac.uk/~adrianj/archer030914/Exercises/sharpen.tar.gz
Resolving www2.epcc.ed.ac.uk... 129.215.62.177
Connecting to www2.epcc.ed.ac.uk|129.215.62.177|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1921882 (1.8M) [application/x-gzip]

3

Saving to: ‘sharpen.tar.gz’

100%[======================================>] 1,921,882 --.-K/s in 0.02s

2013-11-24 13:55:18 (86.9 MB/s) - ‘sharpen.tar.gz’ saved [1921882/1921882]

To unpack the archive:

guestXX@archer:~> tar -xzvf sharpen.tar.gz
sharpen/
sharpen/C/
sharpen/C-MPI/
.
--snip--
.
sharpen/C/sharpen.c
sharpen/C/sharpen.h
sharpen/C/sharpen.pbs

This program takes a fuzzy image and uses a simple algorithm to sharpen
the image. A very basic parallel version of the algorithm has been imple-
mented which we will use in this exercise. There are a number of versions of
the sharpen program available:

C-MPI Parallel C version using MPI

F-MPI Parallel Fortran version using MPI

C-HYB Parallel C version using a hybrid of MPI and OpenMP

F-HYB Parallel Fortran version using a hybrid of MPI and OpenMP

3.3 Compile the source code to produce an executable file

We will compile the C/MPI parallel version of the code for our example.
Move to the C-MPI subdirectory and build the program:

guestXX@archer:~> cd sharpen/C-MPI
guestXX@archer:~> ls
Makefile dosharpen.c fuzzy.pgm location.h sharpen.h
cio.c filter.c location.c sharpen.c sharpen.pbs
guestXX@archer:~> make

4

cc -g -c sharpen.c
cc -g -c dosharpen.c
cc -g -c filter.c
cc -g -c cio.c
cc -g -c location.c
cc -o sharpen sharpen.o dosharpen.o filter.o cio.o location.o

This should produce an executable file called sharpen which we will run
on the ARCHER compute nodes. (Note: this executable will not work on
the ARCHER frontend nodes as it requires MPI which is dependent on being
run on compute nodes.)

For the Fortran MPI version, the process is much the same as above:

guestXX@archer:~> cd sharpen/F-MPI
guestXX@archer:~> ls
Makefile filter.f90 fuzzy.pgm sharpen.f90
dosharpen.f90 fio.f90 location.c sharpen.pbs
guestXX@archer:~> make
ftn -g -c sharpen.f90
ftn -g -c dosharpen.f90
ftn -g -c filter.f90
ftn -g -c fio.f90
cc -g -c location.c
ftn -o sharpen sharpen.o dosharpen.o filter.o fio.o location.o

As before, this should produce a sharpen executable.
Don’t worry about the C file - here it is just providing an easy method

for printing out the program’s CPU bindings at run time.

3.4 Running a job

As with other HPC systems, use of the compute nodes on ARCHER is
mediated by the PBS job submission system. This is used to ensure that all
users get access to their fair share of resources, to make sure that the machine
is as efficiently used as possible and to allow users to run jobs without having
to be physically logged in.

Whilst it is possible to run interactive jobs (jobs where you log directly
into the backend nodes on ARCHER and run your executable there) on
ARCHER, and they are useful for debugging and development, they are not
ideal for running long and/or large numbers of production jobs as you need
to be physically interacting with the system to use them.

5

The solution to this, and the method that users generally use to run
jobs on systems like ARCHER, is to run in batch mode. In this case you
put the commands you wish to run in a file (called a job script) and the
system executes the commands in sequence for you with no need for you to
be interacting.

3.4.1 Write the PBS job script

Make sure you are logged onto ARCHER and not in an interactive job ses-
sion. Using the editor of your choice, open a new file. For example:

guestXX@archer:~> emacs sharpen_batch.pbs

If you are unfamiliar with using a terminal for text editing, detailed
instructions on the use of emacs, as well as general commands for examining
files, are included in the Appendix.

Add the following lines to the file:

#!/bin/bash --login

#PBS -l select=1
#PBS -l walltime=00:05:00
#PBS -A y14
#PBS -N sharpen

Change to directory that the job was submitted from
cd $PBS_O_WORKDIR

aprun -n 4 ./sharpen

The first line specifies which shell to use to interpret the commands we
include in the script. Here we use the Bourne Again SHell (bash) which is
the default on most modern systems. The –login option tells the shell to
behave as if it was an interactive shell.

The #PBS lines provide options to the job submission system where “-l
select” specifies that we want to reserve 1 compute node for our job - the min-
imum job size on ARCHER is 1 node (24 cores); the “-l walltime=00:05:00”
sets the maximum job length to 5 minutes; “-A y14” sets the budget to charge
the job to “y14”; “-N sharpen” sets the job name to “sharpen”.

The remaining lines are the commands to be executed in the job.
Here we have a comment beginning with “#”, a directory change to

6

$PBS_O_WORKDIR (an environment variable that specifies the directory
the job was submitted from) and the aprun command (this command tells
the system to run the jobs on the compute nodes rather than the frontend
nodes).

3.4.2 Submit the script to the PBS job submission system

Simply use the qsub command with the reservation ID (i.e. (replace <resID>
in the command below with the reservation ID provided by the trainer) and
the job submission script name:

guestXX@archer:~> qsub -q <resID> sharpen_batch.pbs
58306.sdb

The jobID returned from the qsub command is used as part of the names
of the output files discussed below and also when you want to delete the job
(for example, you have submitted the job by mistake).

3.4.3 Monitoring/deleting your batch job

The PBS command qstat can be used to examine the batch queues and see
if your job is queued, running or complete. qstat on its own will list all the
jobs on ARCHER (usually hundreds) so you can use the “-u $USER” option
to only show your jobs:

guestXX@archer:~> qstat -u $USER

sdb:
Req’d Req’d Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
--------------- -------- -------- ---------- ------ --- --- ------ ----- - -----
58306.sdb guest01 standard sharpen -- 1 24 -- 00:15 Q --

if you do not see your job, it usually means that it has completed.
If you want to delete a job, you can use the qdel command with the

jobID. For example:

guestXX@archer:~> qdel 58306.sdb

7

3.4.4 Finding the output

The job submission system places the output from your job into two files:
<job name>.o<jobID> and <job name>.e<jobID> (note that the files are
only produced on completion of the job). The *.o<jobID> file contains the
output from your job *.e<jobID> contains the errors.

guestXX@archer:~> cat sharpen.o58306

Image sharpening code running on 4 processor(s)

Input file is: fuzzy.pgm
Image size is 564 x 770

Using a filter of size 17 x 17

Reading image file: fuzzy.pgm
... done

Starting calculation ...
Process 0 is on cpu 0 on node nid01133
Process 1 is on cpu 1 on node nid01133
Process 3 is on cpu 3 on node nid01133
Process 2 is on cpu 2 on node nid01133
... finished

Writing output file: sharpened.pgm

... done

Calculation time was 1.552566 seconds
Overall run time was 1.614773 seconds
Application 742518 resources: utime ~6s, stime ~0s, Rss ~24192, inblocks ~13696, outblocks ~17967

3.5 Submit an interactive job and wait for it to start

As well as using the batch system to schedule and run your jobs, it is also
possible to submit an interactive job. An interactive job allows us to run
executables on the ARCHER compute nodes directly from the command
line using the aprun command as we did in the batch script. This mode of
use is extremely useful for debugging and code development as it allows you

8

to get instant feed back on your executable on the compute nodes rather
than having to wait for the end of the job (as is the case for non-interactive
or batch jobs). It has the disadvantage that you have to be physically logged
into the machine to issue the commands.

Submit an interactive job using the command (replace <resID> with the
reservation ID provided by the trainer):

guestXX@archer:~> qsub -IV -l select=1,walltime=3:0:0 -A y14 -q <resID>
qsub: waiting for job 57939.sdb to start

(Note that there is no space between the select and walltime options
above as they are both arguments to the “-l” option.) The meanings of the
various options are:

-I Interactive job

-V Make the job environment match my current session

-l select=1 Reserve 1 node (24 cores) for this job.

-l walltime=3:0:0 Set a maximum wallclock time of 3 hours for this job

-A y14 Charge the job to the y14 budget

-q <resID> Submit the job in the specified reservation

The job may take a minute to start, when it starts you will be returned
to a command prompt in your home directory.

Once you have finished running executables on the compute nodes you
can exit the interactive job using the exit command (do not do this right
now):

guestXX@mom3:~> exit
logout

qsub: job 57939.sdb completed

If you type exit by mistake you can simply resubmit the job using the
qsub command above again.

9

3.6 Run the parallel executable on a compute node

Firstly, change to the directory where you compiled the code. For example:

guestXX@mom3:~> cd /work/y14/y14/guestXX/sharpen/C-MPI
guestXX@mom3:/work/y14/y14/guestXX/sharpen/C-MPI> ls
Makefile dosharpen.c filter.o location.h sharpen.c sharpen.pbs
cio.c dosharpen.o fuzzy.pgm location.o sharpen.h
cio.o filter.c location.c sharpen sharpen.o

Use the aprun command to run the sharpen executable using 4 parallel
tasks - the ‘-n’ option to aprun specifies how many parallel tasks to use:

guestXX@mom3:/work/y14/y14/guestXX/sharpen/C-MPI> aprun -n 4 ./sharpen

Image sharpening code running on 4 processor(s)

Input file is: fuzzy.pgm
Image size is 564 x 770

Using a filter of size 17 x 17

Reading image file: fuzzy.pgm
... done

Starting calculation ...
Process 0 is on cpu 0 on node nid02206
Process 1 is on cpu 1 on node nid02206
Process 2 is on cpu 2 on node nid02206
Process 3 is on cpu 3 on node nid02206
... finished

Writing output file: sharpened.pgm

... done

Calculation time was 1.541406 seconds
Overall run time was 1.602274 seconds
Application 738180 resources: utime ~6s, stime ~0s, Rss ~24192, inblocks ~13693, outblocks ~17967

If you try to run the executable using aprun outwith an interactive job
then you will see an error that looks like:

10

guestXX@archer:~> aprun -n 4 ./sharpen
apsched: request exceeds max nodes, alloc

3.7 Viewing the images

To see the effect of the sharpening algorithm, you can view the images using
the eog Eye of Gnome program, e.g.

guestXX@archer:~> eog fuzzy.pgm
guestXX@archer:~> eog sharpened.pgm

Type “q” in the image window to close the program.

3.8 Additional Exercises

Now you have successfully run a simple parallel job on ARCHER, here are
some suggestions for additional exercises.

1. The sharpen program comprises some purely serial parts (all IO is
performed by rank 0) and some purely parallel parts (the sharpening
algorithm operates independently on each pixel). Measure the per-
formance on different numbers of processes. Does the computation
time decrease linearly? Does the total time follow Amdahl’s law as
expected?

2. Compile the program using different compilers (you will need to type
make clean then make to force the program to be rebuilt). Do you

see any differences in performance?

3. Use the -N option to aprun to control the number of processes on each
node of ARCHER, and set it to a value less than 24. Look at the
log file to see how the processes are allocated to the cores on different
nodes – is it as you expected? We will see how to control the placement
of processes more precisely in subsequent lectures.

11

4 Appendix

4.1 Detailed Login Instructions

4.1.1 Procedure for Mac and Linux users

Open a command line Terminal and enter the following command:

local$ ssh -X guestXX@login.archer.ac.uk
Password:

you should be prompted to enter your password.

4.1.2 Procedure for Windows users

Windows does not generally have SSH installed by default so some extra
work is required. You need to download and install a SSH client application
- PuTTY is a good choice:

• http://www.chiark.greenend.org.uk/s̃gtatham/putty/

When you start PuTTY you should be able to enter the ARCHER login
address (login.archer.ac.uk). When you connect you will be prompted for
your user ID and password.

4.2 Running commands

You can list the directories and files available by using the ls (LiSt) command:

guestXX@archer:~> ls
bin work

You can modify the behaviour of commands by adding options. Options
are usually letters or words preceded by ‘-’ or ‘–’. For example, to see more
details of the files and directories available you can add the ‘-l’ (l for long)
option to ls:

guestXX@archer:~> ls -l
total 8
drwxr-sr-x 2 user z01 4096 Nov 13 14:47 bin
drwxr-sr-x 2 user z01 4096 Nov 13 14:47 work

12

http://www.chiark.greenend.org.uk/~sgtatham/putty/

If you want a description of a particular command and the options avail-
able you can access this using the man (MANual) command. For example,
to show more information on ls:

guestXX@archer:~> man ls
Man: find all matching manual pages
* ls (1)

ls (1p)
Man: What manual page do you want?
Man:

In the manual, use the spacebar to move down a page, ‘u’ to move up,
and ‘q’ to quit and exit back to the command line.

4.3 Using the Emacs text editor

As you do not have access to a windowing environment when using
ARCHER, Emacs will be used in in-terminal mode. In this mode you can
edit the file as usual but you must use keyboard shortcuts to run operations
such as “save file” (remember, there are no menus that can be accessed using
a mouse).

Start Emacs with the emacs command and the name of the file you wish
to create. For example:

guestXX@archer:~> emacs sharpen_batch.pbs

The terminal will change to show that you are now inside the Emacs text
editor:

13

Typing will insert text as you would expect and backspace will delete
text. You use special key sequences (involving the Ctrl and Alt buttons) to
save files, exit Emacs and so on.

Files can be saved using the sequence “Ctrl-x Ctrl-s” (usually abbreviated
in Emacs documentation to “C-x C-s”). You should see the following briefly
appear in the line at the bottom of the window (the minibuffer in Emacs-
speak):

Wrote ./sharpen_batch.pbs

To exit Emacs and return to the command line use the sequence “C-x
C-c”. If you have changes in the file that have not yet been saved Emacs
will prompt you (in the minibuffer) to ask if you want to save the changes
or not.

Although you could edit files on your local machine using whichever
windowed text editor you prefer it is useful to know enough to use an in-
terminal editor as there will be times where you want to perform a quick
edit that does not justify the hassle of editing and re-uploading.

4.4 Useful commands for examining files

There are a couple of commands that are useful for displaying the contents
of plain text files on the command line that you can use to examine the
contents of a file without having to open in in Emacs (if you want to edit a
file then you will need to use Emacs). The commands are cat and less. cat

14

simply prints the contents of the file to the terminal window and returns to
the command line. For example:

guestXX@archer:~> cat sharpen_batch.pbs
aprun -n 4 ./sharpen

This is fine for small files where the text fits in a single terminal window.
For longer files you can use the less command. less gives you the ability to
scroll up and down in the specified file. For example:

guestXX@archer:~> less sharpen.c

Once in less you can use the spacebar to scroll down and ‘u’ to scroll up.
When you have finished examining the file you can use ‘q’ to exit less and
return to the command line.

15

	Aims
	Introduction
	Instructions
	Log into ARCHER frontend nodes and run commands
	Download and extract the exercise files
	Compile the source code to produce an executable file
	Running a job
	Write the PBS job script
	Submit the script to the PBS job submission system
	Monitoring/deleting your batch job
	Finding the output

	Submit an interactive job and wait for it to start
	Run the parallel executable on a compute node
	Viewing the images
	Additional Exercises

	Appendix
	Detailed Login Instructions
	Procedure for Mac and Linux users
	Procedure for Windows users

	Running commands
	Using the Emacs text editor
	Useful commands for examining files

