
Dr David Henty

HPC Training and Support

d.henty@epcc.ed.ac.uk

+44 131 650 5960

Advanced Parallel

Programming

Miscellaneous MPI-IO topics

25/08/2014 MPI-IO 4: Miscellaneous 2

MPI-IO Errors

• Unlike the rest of MPI, MPI-IO errors are not fatal

– probably don’t want your program to crash if a file open fails

– always need to check the error code!

• Many different error codes can be reported

– I would suggest simply quitting if ierr != MPI_SUCCESS

• Can change this behaviour for file operations

– same functionality as MPI_Errhandler_create etc.

– called MPI_File_create_errhandler, ...

– error handlers are attached to file handles rather than communicators

– can set handler to be MPI_ERRORS_ARE_FATAL

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 3

Size of File on Disk

• Useful to check length of output file

– ls –l <filename>

– check that size (in bytes) is what you expect

• Can be confusing if file already exists

– length will be increased if new file is longer than existing file

– but may not be decreased if new file is shorter!

• Delete old files before running your test programs

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 4

Datatype for MPI_File_read / write

• Usually pass the basic type of the array being processed

– eg MPI_FLOAT, MPI_REAL

• Can pass derived types

– useful for receiving the core of an array when local arrays have halos

MPI_File_read_all(fh, &x[1][1], 1, vector3x2, ...);

MPI_FILE_READ_ALL(fh, x(2,2) , 1, vector3x2, ...)

– or could use a 3x2 subarray and pass &x[0][0] or x(1,1)

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 5

General Decompositions

• We have just considered block decompositions

– where local array size is an exact multiple of global array size

• If the sizes don’t match

– define different sized subarrays on each process

– eg processes at the edge of the grid have smaller subsections

• This does not generalize to block-cyclic decompositions

– how do we specify discontinuous subarrays?

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

3

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 6

Distributed Arrays

int MPI_Type_create_darray(int size, int rank,

 int ndims, int array_of_gsizes[],

 int array_of_distribs[], int array_of_dargs[],

 int array_of_psizes[], int order,

 MPI_Datatype oldtype, MPI_Datatype *newtype);

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS

 ARRAY_OF_GSIZES, ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS,

 ARRAY_OF_PSIZES, ORDER, OLDTYPE, NEWTYPE, IERR)

INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*),

 ARRAY_OF_DISTRIBS(*), ARRAY_OF_DARGS(*),

 ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERR

• See the man page for full details!

– uses HPF conventions for block-cyclic distributions

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 7

Unstructured Data

• Imagine a particle simulation

– each particle is a compound object with a type and position (x,y,z)

– eg a C struct or Fortran type

– each particle has unique global identifier 1, 2, 3, ..., N-1, N

• Particles move around

– at the end of a simulation, each process will have:

– a different numbers of particles

– with a random mixture of global identifiers

• Two choices

– write to file in the order they appear in the processes

– write to file with position based on global identifier

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 8

Approach

• Define a derived type to match the particle object

– eg MPI_PARTICLE

– use this as the etype

• Writing in process order

– need to know where to start in the file

– calculate the sum of the number of particles on previous ranks

– using MPI_Scan

• Writing in global order

– call MPI_Type_indexed (or create_indexed_block)

– use this as the filetype

– write multiple instances of MPI_PARTICLE

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 9

Unstructured Meshes

• Similar to global ordering of particles

– each element has both a local and global identifier

– want the file to be ordered by the global id

• Define an MPI_ELEMENT

– use this as the etype

– create an indexed filetype based on global id

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 10

Blocking IO

 define big arrays: old and new

 loop many times

 ! do a computationally expensive operation

 new = expensive_function(old)

 old = new

 every 10 iterations:

 save_to_disk(old)

 end loop

• This code spends a lot of time waiting while saving to disk

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 11

Non-blocking IO

 define big arrays: old and new

 loop many times

 ! do a computationally expensive operation

 new = expensive_function(old)

 if (saving to disk):

 finish: isave_to_disk(old)

 old = new

 every 10 iterations:

 start: isave_to_disk(old)

 end loop

• This code overlaps computation and IO

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 12

Non-blocking IO in MPI-IO

• Two forms

• General non-blocking

– MPI_File_iwrite(fh, buf, count, datatype, request)

– finish by waiting on request

– but no collective version

• Split collective
– MPI_File_write_all_begin(fh, buf, count, datatype)

– MPI_File_write_all_end(fh, buf, status)

– only a single outstanding IO operation at any one time

– allows for collective version

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 13

Serial IO

• How can I read MPI-IO files in a serial program?

• Using native format

– data is raw bytes

– use fread in C or direct access unformatted IO in Fortran

– see ioread.c and ioread.f90 for examples

– Fortran approach is quite old-fashioned (direct access IO)

– new access=“stream” functionality makes this a bit simpler

• Other MPI-IO formats will require more work!

• Note that you can do single process IO in MPI-IO

– pass MPI_COMM_SELF to MPI_File_open

http://www.epcc.ed.ac.uk/

Performance

• Recall schematic overview of parallel file system Lustre

25/08/2014 MPI-IO 4: Miscellaneous 14

http://www.epcc.ed.ac.uk/

Application-side parallel IO

• Implementing MPI-IO has achieved

– all data going to a single file

– minimal stress on Meta Data Server (MDS) – a serial bottleneck

– potential for many processes to write simultaneously

• But …

– performance requires multiple parallel writes to disk

– in Lustre, requires multiple Object Storage Servers (OSS) writing to

multiple Object Storage Targets (OST)

– an OSS is like an IO server, an OST is like a physical disk

• User has control over assignment of files to OSTs

– but default is only a few OSTs

– MPI-IO performance not much better than naïve master IO

25/08/2014 MPI-IO 4: Miscellaneous 15

http://www.epcc.ed.ac.uk/

Lustre Striping

• Can split a file across multiple OSTs

– each block is called a “stripe”

• lfs setstripe -c 8 <filename>

– stripes across 8 OSTs

– has substantial benefits for performance

• Test case

– 2048 x 2048 x 2048 array across 4096 processors (16 x 16 x 16)

– file size is 32 GB

– identical IO approach as used exercise

– generalised to 3D

– local halos automatically stripped off with derived type in MPI-IO write call

25/08/2014 MPI-IO 4: Miscellaneous 16

http://www.epcc.ed.ac.uk/

Results on HECToR

25/08/2014 MPI-IO 4: Miscellaneous 17

0

500

1000

1500

2000

2500

0 20 40 60 80 100

IO
 R

a
te

 (
M

B
/s

)

Lustre Stripe Count

http://www.epcc.ed.ac.uk/

25/08/2014 MPI-IO 4: Miscellaneous 18

Documentation

• MPI-2 web pages

• Another tutorial

– www.sdsc.edu/us/training/workshops/institute2005

/docs/Thakur-MPI-IO.ppt

• MPI-2 book

http://www-unix.mcs.anl.gov/mpi/usingmpi2/

http://www.epcc.ed.ac.uk/

