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Code_Saturne 

•  Code_Saturne is developed by EDF (France) 
•  Computational Fluid Dynamics 
•  open source 
•  Fortran, C, Python 

•  fully validated production versions with long-term 
support every two years (currently 3.0) 

•  development versions 
 
•  http://code-saturne.org 
 



Technology 
-Co-located finite volume, arbitrary unstructured meshes, predictor-corrector 
-350 000 lines of code, 37% Fortran, 50% C, 13% Python 
-MPI for distributed-memory and some openMP for shared-memory machines 
 

Physical modeling 
-Laminar and turbulent flows: k-eps, k-omega, SST, v2f, RSM, LES models 
-Radiative transfer (DOM, P-1) 
-Coal, heavy-fuel and gas combustion 
-Electric arcs and Joule effect 
-Lagrangian module for particles tracking 
-Atmospheric modeling (merging Mercure_Saturne) 
-ALE method for deformable meshes 
-Rotor / stator interaction for pump modeling, for marine turbines 
 

Flexibility 
-Portability (Unix, Linux and MacOS X) 
-Graphical User Interface with possible integration within the SALOME platform 

 

 

 

Code_Saturne’s Features 



Toolchain 
Reduced number of tools 

 
•  Each with rich functionality 
•  Natural separation between interactive and potentially long-running parts 
•  In-line (pdf) documentation 



Example Applications 

Hydrofoil 

Free surface modelling (ALE) 

Thermofluids study of the hot box dome AGR (EDF Energy) 

•  Complex flow due through the 
forest of tubes 

•  Calculation shows little mixing 
in the centre of the dome 

•  Temperatures at the dome 
highest where thermocouples 
are located 



Code_Saturne I/O 

Different types of file I/O 
•  read input 
•  write checkpoint data periodically 
•  read checkpoint if restarting a previous simulation 
•  write output 
 
 
Different methods for I/O 
•  STD C IO 
•  MPI IO 
 



Motivation (1) 

High-End Machines offer hope for more multi-physics & multi-scale 
for engineering in ever more detailed configurations. 
 
Huge effort has been dedicated to improve/optimise solvers (in our 
case Navier-Stokes equation solvers) for them to scale on the current 
existing petaflop machines, but arguably less time is dedicated by 
CFD developers to IOs. 
 
Several types of IOs and some way around loading/writing huge data 
files have been identified:- 
-INPUT: mesh, domain partition (if already known), restart file (if 
needed), input data 
-OUTPUT: mesh (if changed, with added periodicity for instance), 
domain partition (if computed by the code), listing file, post-
processing file, checkpoint, probes 
 



Motivation (2) 

Ways around exist to avoid loading full data set for:- 
-INPUT:- 

 -mesh (mesh joining and mesh multiplication) 
 -domain partition (partition re-computed by the code) 

-OUTPUT:- 
 -pre-processed mesh (not needed, because computed by the 

code) 
 -domain partition (not needed because computed by the code) 
 -post-processing (co-processing, for instance using Catalyst) 

But not for:- 
-INPUT:- 

 -restart file, as/if the whole flow field is needed 
-OUTPUT:- 

 -checkpoint file, as/if the whole flow field is needed 
 



I/O Method 

CS_FILE_STDIO_SERIAL Serial standard C IO 
(funnelled through rank 0 in parallel) 
 

CS_FILE_STDIO_PARALLEL Per-process standard C IO 

CS_FILE_MPI_INDEPENDENT Non-collective MPI-IO 
with independent file open and close 
 

CS_FILE_MPI_NON_COLLECTIVE Non-collective MPI-IO 
with collective file open and close 
 

CS_FILE_MPI_COLLECTIVE Collective MPI-IO 

I/O Methods in 3.3.1 



Selecting the I/O method 
 
•  GUI and XML file 

o  -> “Calculation Management” 
    -> “Performance Tuning” 

 
•  Directly: 

o  Can be set in the cs_user_performance_tuning 
file in cs_user_parallel_io() 

o  Can also provide MPI IO hints   

I/O Methods in 3.3.1 



Block-Based IO 

Use global numbering 
Redistribution on n blocks 
•  n blocks ≤ n cores 
•  Minimum block size may be set to  
avoid many small blocks (for some 
communication or usage schemes), or to 
force 1 block (for I/O with non-parallel 
libraries) 
•  Rank 0 is collecting info from the blocks 
 



Mesh Multiplication 

Most mesh generators are serial and thus memory-limited 
A way around to generate extremely large meshes is to build 

meshes from existing coarse ones and globally refine each cell 
This process might be repeated several times 
Developed by Ales Ronovsky (VSB, PRACE) 



Architectures 

ARCHER – XC30 / Lustre 

3008 Compute nodes: two 2.7 GHz, 
12-core E5-2697 v2 (Ivy Bridge) series 
p rocessors . Wi th in the node , 
QuickPath Interconnect (QPI) links to 
connect the 2 processors 
 
The Cray Aries interconnect links all 
compute nodes in a Dragonfly 
topology. 
 
Compute nodes access the file system 
via IO nodes running the Cray Data 
Virtualization Service (DVS) 

Blue Joule – BGQ / GPFS 
 
6 racks, each rack containing 1,024 
16-core, 64 bit, 1.60 GHz A2 PowerPC 
processors. 
 
 
All the racks have 8 IO nodes which 
connect the BGQ racks to the shared 
GPFS storage over Infiniband. 
 
 
The minimum block size which can be 
booted for a job is therefore 1,024/8 
nodes, or 128 nodes. 



Test Case - Configuration 

3D lid-driven cavity - fully unstructured mesh (tetras) 
 
Size of the meshes: 
MM Level 0 (13 million cells – Current production runs) 
MM Level 1 (111 million cells – Current production runs) 
MM Level 2 (890 million cells – Production runs in 2015) 
MM Level 3 (7.2 billion cells – Production runs in 2016/2017) 
 
Geometric partitioning  
using a Space-Filling  
Curve approach (Hilbert) 
 
 

Note 
IO tests are performed when the solver performance is still acceptable 

 
If not stated, machine default settings. No striping for Lustre, for instance 

 



Cores Time in Solver 

262,144 652.59s 

524,288 354.89s 

Nodes/Ranks Time in Solver 

16384/32 70.124s 

32768/32 50.207s 
49152/32 43.465s 

105B Cell Mesh (MIRA, BGQ) 

13B Cell Mesh (MIRA, BGQ) 

Mesh generated by Mesh Multiplication 

Scalability at Scale (1) 



Comparison HECToR – ARCHER 
 

Mesh generated by Mesh Multiplication 
Cube meshed with tetra cells 

Scalability at Scale (2) 



IO HECToR (Lustre) 

Comparison IO per Blocks (Ser-IO) and MPI-IO 
Comparison Lustre (Cray) / GPFS (IBM BlueGene/Q)  

Tube Bundle 

812M cells 

Block IO: ~same performance on Lustre and GPFS 

MPI-IO: 8 to 10 times faster with GPFS 



MM – Level 0 

There is no mesh 
multiplication here  

Writing Checkpoint Files 



MM – Level 1 

Writing Checkpoint Files – Mesh_Output 



MM – Level 2 

Writing Checkpoint Files – Mesh_Output 



One time step only for 
the solver. 
Timing also involves IOs 

MM – Level 3 

Writing Mesh_Output 



Quick Summary 



MPI – IO vs Block IO 

Writing Checkpoint Files – Mesh_Output 



Conclusions 

With the current machine/filesystem settings 
 

MPI-IO 
ARCHER (Lustre) better for small meshes than larger ones 

BlueJoule (GPFS) better for large meshes than smaller ones 
 

MPI-IO vs Block IO 
If results on HECToR were comparable, much better obtained with 

MPI-IO on ARCHER 
 



LUSTRE Striping 

Lustre and Striping 
 

Previous ARCHER results used defaults for striping. 
Use striping for better performance for large meshes? 
 
Stripe count for results directory set to all available 
OSTs with: 

lfs setstripe 



Striping – MM Level1 

Number of Cores
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MPI-IO - 111 M Tetra Mesh
No Stripping Read Input 814MB
No Stripping Write Checkpoint1 1.7GB
No Stripping Write Checkpoint2 3.3GB
No Stripping Write Mesh_Output 11.6GB
Full Stripping Read Input 814MB
Full Stripping Write Checkpoint1 1.7GB
Full Stripping Write Checkpoint2 3.3GB
Full Stripping Write Mesh_Output 11.6GB



Striping – MM Level 2 
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MPI-IO - 890 M Tetra Mesh

No Stripping Read Input 814MB
No Stripping Write Checkpoint1 13.5GB
No Stripping Write Checkpoint2 26.5GB
No Stripping Write Mesh_Output 92.8GB
Full Stripping Read Input 814MB
Full Stripping Write Checkpoint1 13.5GB
Full Stripping Write Checkpoint2 26.5GB
Full Stripping Write Mesh_Output 92.8GB



Striping – MM Level 3 

Number of Cores
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No Stripping Read Input 814MB
No Stripping Write Mesh_Output 742GB
Full Stripping Read Input 814MB
Full Stripping Write Mesh_Output 742GB

MPI-IO - 7.2 B Tetra Mesh



Perspectives 
 

BGAS (Blue Gene Active Storage) System 
 
The Active Storage Project is aimed at:- 
-enabling close integration of emerging solid-state storage 
technologies with high performance networks and integrated 
processing capability 
-exploring the application and middleware opportunities presented by 
such systems 
-anticipating future scalable systems comprised of very dense Storage 
Class Memories (SCM) with fully integrated processing and network 
capability 

 
Project to test Code_Saturne on the BGAS System  

(Collaboration between STFC (the Hartree Centre) and IBM) 
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