
Parallel IO in Code_Saturne

Charles MOULINEC
Vendel SZEREMI

ARCHER/PRACE Training – 2-3 Sept 14

STFC Daresbury Laboratory, UK

 Acknowledgements to:

 Yvan Fournier from EDF R&D, FR

CCP12, UKTC and The Hartree Centre

Contents

Code_Saturne
Main Features and Toolchain

Two Applications

Motivation
Code_Saturne IO Methods

On the Fly Mesh Generation: Mesh Multiplication

Test Architectures and Test Cases
Scalability at Scale

I/O using HECToR (Lustre)
Results - ARCHER (Lustre) vs Blue Joule (GPFS)

Conclusions - Perspectives

Code_Saturne

•  Code_Saturne is developed by EDF (France)
•  Computational Fluid Dynamics
•  open source
•  Fortran, C, Python

•  fully validated production versions with long-term
support every two years (currently 3.0)

•  development versions

•  http://code-saturne.org

Technology
-Co-located finite volume, arbitrary unstructured meshes, predictor-corrector
-350 000 lines of code, 37% Fortran, 50% C, 13% Python
-MPI for distributed-memory and some openMP for shared-memory machines

Physical modeling
-Laminar and turbulent flows: k-eps, k-omega, SST, v2f, RSM, LES models
-Radiative transfer (DOM, P-1)
-Coal, heavy-fuel and gas combustion
-Electric arcs and Joule effect
-Lagrangian module for particles tracking
-Atmospheric modeling (merging Mercure_Saturne)
-ALE method for deformable meshes
-Rotor / stator interaction for pump modeling, for marine turbines

Flexibility
-Portability (Unix, Linux and MacOS X)
-Graphical User Interface with possible integration within the SALOME platform

Code_Saturne’s Features

Toolchain
Reduced number of tools

•  Each with rich functionality
•  Natural separation between interactive and potentially long-running parts
•  In-line (pdf) documentation

Example Applications

Hydrofoil

Free surface modelling (ALE)

Thermofluids study of the hot box dome AGR (EDF Energy)

•  Complex flow due through the
forest of tubes

•  Calculation shows little mixing
in the centre of the dome

•  Temperatures at the dome
highest where thermocouples
are located

Code_Saturne I/O

Different types of file I/O
•  read input
•  write checkpoint data periodically
•  read checkpoint if restarting a previous simulation
•  write output

Different methods for I/O
•  STD C IO
•  MPI IO

Motivation (1)

High-End Machines offer hope for more multi-physics & multi-scale
for engineering in ever more detailed configurations.

Huge effort has been dedicated to improve/optimise solvers (in our
case Navier-Stokes equation solvers) for them to scale on the current
existing petaflop machines, but arguably less time is dedicated by
CFD developers to IOs.

Several types of IOs and some way around loading/writing huge data
files have been identified:-
-INPUT: mesh, domain partition (if already known), restart file (if
needed), input data
-OUTPUT: mesh (if changed, with added periodicity for instance),
domain partition (if computed by the code), listing file, post-
processing file, checkpoint, probes

Motivation (2)

Ways around exist to avoid loading full data set for:-
-INPUT:-

 -mesh (mesh joining and mesh multiplication)
 -domain partition (partition re-computed by the code)

-OUTPUT:-
 -pre-processed mesh (not needed, because computed by the

code)
 -domain partition (not needed because computed by the code)
 -post-processing (co-processing, for instance using Catalyst)

But not for:-
-INPUT:-

 -restart file, as/if the whole flow field is needed
-OUTPUT:-

 -checkpoint file, as/if the whole flow field is needed

I/O Method

CS_FILE_STDIO_SERIAL Serial standard C IO
(funnelled through rank 0 in parallel)

CS_FILE_STDIO_PARALLEL Per-process standard C IO

CS_FILE_MPI_INDEPENDENT Non-collective MPI-IO
with independent file open and close

CS_FILE_MPI_NON_COLLECTIVE Non-collective MPI-IO
with collective file open and close

CS_FILE_MPI_COLLECTIVE Collective MPI-IO

I/O Methods in 3.3.1

Selecting the I/O method

•  GUI and XML file

o  -> “Calculation Management”
 -> “Performance Tuning”

•  Directly:

o  Can be set in the cs_user_performance_tuning
file in cs_user_parallel_io()

o  Can also provide MPI IO hints

I/O Methods in 3.3.1

Block-Based IO

Use global numbering
Redistribution on n blocks
•  n blocks ≤ n cores
•  Minimum block size may be set to
avoid many small blocks (for some
communication or usage schemes), or to
force 1 block (for I/O with non-parallel
libraries)
•  Rank 0 is collecting info from the blocks

Mesh Multiplication

Most mesh generators are serial and thus memory-limited
A way around to generate extremely large meshes is to build

meshes from existing coarse ones and globally refine each cell
This process might be repeated several times
Developed by Ales Ronovsky (VSB, PRACE)

Architectures

ARCHER – XC30 / Lustre

3008 Compute nodes: two 2.7 GHz,
12-core E5-2697 v2 (Ivy Bridge) series
p rocessors . Wi th in the node ,
QuickPath Interconnect (QPI) links to
connect the 2 processors

The Cray Aries interconnect links all
compute nodes in a Dragonfly
topology.

Compute nodes access the file system
via IO nodes running the Cray Data
Virtualization Service (DVS)

Blue Joule – BGQ / GPFS

6 racks, each rack containing 1,024
16-core, 64 bit, 1.60 GHz A2 PowerPC
processors.

All the racks have 8 IO nodes which
connect the BGQ racks to the shared
GPFS storage over Infiniband.

The minimum block size which can be
booted for a job is therefore 1,024/8
nodes, or 128 nodes.

Test Case - Configuration

3D lid-driven cavity - fully unstructured mesh (tetras)

Size of the meshes:
MM Level 0 (13 million cells – Current production runs)
MM Level 1 (111 million cells – Current production runs)
MM Level 2 (890 million cells – Production runs in 2015)
MM Level 3 (7.2 billion cells – Production runs in 2016/2017)

Geometric partitioning
using a Space-Filling
Curve approach (Hilbert)

Note
IO tests are performed when the solver performance is still acceptable

If not stated, machine default settings. No striping for Lustre, for instance

Cores Time in Solver

262,144 652.59s

524,288 354.89s

Nodes/Ranks Time in Solver

16384/32 70.124s

32768/32 50.207s
49152/32 43.465s

105B Cell Mesh (MIRA, BGQ)

13B Cell Mesh (MIRA, BGQ)

Mesh generated by Mesh Multiplication

Scalability at Scale (1)

Comparison HECToR – ARCHER

Mesh generated by Mesh Multiplication
Cube meshed with tetra cells

Scalability at Scale (2)

IO HECToR (Lustre)

Comparison IO per Blocks (Ser-IO) and MPI-IO
Comparison Lustre (Cray) / GPFS (IBM BlueGene/Q)

Tube Bundle

812M cells

Block IO: ~same performance on Lustre and GPFS

MPI-IO: 8 to 10 times faster with GPFS

MM – Level 0

There is no mesh
multiplication here

Writing Checkpoint Files

MM – Level 1

Writing Checkpoint Files – Mesh_Output

MM – Level 2

Writing Checkpoint Files – Mesh_Output

One time step only for
the solver.
Timing also involves IOs

MM – Level 3

Writing Mesh_Output

Quick Summary

MPI – IO vs Block IO

Writing Checkpoint Files – Mesh_Output

Conclusions

With the current machine/filesystem settings

MPI-IO
ARCHER (Lustre) better for small meshes than larger ones

BlueJoule (GPFS) better for large meshes than smaller ones

MPI-IO vs Block IO
If results on HECToR were comparable, much better obtained with

MPI-IO on ARCHER

LUSTRE Striping

Lustre and Striping

Previous ARCHER results used defaults for striping.
Use striping for better performance for large meshes?

Stripe count for results directory set to all available
OSTs with:

lfs setstripe

Striping – MM Level1

Number of Cores

Ti
m

e
(s

)

2000 3000 4000 5000 6000

5

10

15

20

MPI-IO - 111 M Tetra Mesh
No Stripping Read Input 814MB
No Stripping Write Checkpoint1 1.7GB
No Stripping Write Checkpoint2 3.3GB
No Stripping Write Mesh_Output 11.6GB
Full Stripping Read Input 814MB
Full Stripping Write Checkpoint1 1.7GB
Full Stripping Write Checkpoint2 3.3GB
Full Stripping Write Mesh_Output 11.6GB

Striping – MM Level 2

Number of Cores

Ti
m

e
(s

)

20000 30000 40000

10

30

50

70

90

110

130

MPI-IO - 890 M Tetra Mesh

No Stripping Read Input 814MB
No Stripping Write Checkpoint1 13.5GB
No Stripping Write Checkpoint2 26.5GB
No Stripping Write Mesh_Output 92.8GB
Full Stripping Read Input 814MB
Full Stripping Write Checkpoint1 13.5GB
Full Stripping Write Checkpoint2 26.5GB
Full Stripping Write Mesh_Output 92.8GB

Striping – MM Level 3

Number of Cores

Ti
m

e
(s

)

30000 400000

200

400

600

800

1000

1200

No Stripping Read Input 814MB
No Stripping Write Mesh_Output 742GB
Full Stripping Read Input 814MB
Full Stripping Write Mesh_Output 742GB

MPI-IO - 7.2 B Tetra Mesh

Perspectives

BGAS (Blue Gene Active Storage) System

The Active Storage Project is aimed at:-
-enabling close integration of emerging solid-state storage
technologies with high performance networks and integrated
processing capability
-exploring the application and middleware opportunities presented by
such systems
-anticipating future scalable systems comprised of very dense Storage
Class Memories (SCM) with fully integrated processing and network
capability

Project to test Code_Saturne on the BGAS System

(Collaboration between STFC (the Hartree Centre) and IBM)

THANK YOU FOR YOUR
ATTENTION

