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Shared Memory Programming

Exercise Notes

Adrian Jackson

Exercise 1: Hello World

This is a simple exercise to introduce you to the compilation and execution of OpenMP programs. The

example code can be found in ∼/OpenMP/*/HelloWorld/ where the * represents the language of

your choice, i.e. C, Fortran or Fortran90. The code is shown below (you do not need to type it

in!).

Fortran:

program helloworld

implicit none

integer OMP_GET_THREAD_NUM

!$OMP PARALLEL

print *,’Hello from thread number’,OMP_GET_THREAD_NUM()

!$OMP END PARALLEL

end
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Fortran90:

program helloworld

use omp_lib

implicit none

!$OMP PARALLEL

print *,’Hello from thread number’,OMP_GET_THREAD_NUM()

!$OMP END PARALLEL

end program helloworld

C:

#include <stdio.h>

#include <omp.h>

int main(){

#pragma omp parallel

printf("hello from thread %d\n",omp_get_thread_num());

}

Before running it, set the environment variable OMP_NUM_THREADS to a number n between 1 and 4

with the command:

setenv OMP_NUM_THREADS n

When run, the code enters a parallel region at the !$OMP PARALLEL/#pragma omp parallel

command. At this point n threads are spawned, and each thread executes the print command separately.

The OMP_GET_THREAD_NUM()/

omp_get_thread_num() library routine returns a number (between 0 and n-1) which identifies each

thread.

Extra Exercise

Incorporate a call to omp_get_num_threads() into the code and print its value within and outside

of the parallel region.

Exercise 2: Area of the Mandelbrot Set

The aim of this exercise is to use the OpenMP directives learned so far and apply them to a real problem.

It will demonstrate some of the issues which need to be taken into account when adapting serial code to

a parallel version.

The Mandelbrot Set

The Mandelbrot Set is the set of complex numbers c for which the iteration z = z2 + c does not diverge,

from the initial condition z = c. To determine (approximately) whether a point c lies in the set, a finite

number of iterations are performed, and if the condition |z| > 2 is satisfied then the point is considered

to be outside the Mandelbrot Set. What we are interested in is calculating the area of the Mandelbrot Set.

There is no known theoretical value for this, and estimates are based on a procedure similar to that used

here. We will use Monte Carlo sampling to calculate a numerical solution to this problem.
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N.B. Complex numbers in C: Complex arithmetic is supported directly in Fortran, but in C it must be done

manually. For this exercise the template has a struct complex declared. Then for a given complex number

z, z.creal represents the real part and z.cimag the imaginary part. Then assigning z = z2 + c is

given by:

ztemp=(z.creal*z.creal)-(z.cimag*z.cimag)+c.creal;

z.cimag=z.creal*z.cimag*2+c.cimag;

z.creal=ztemp;

using double ztemp as temporary storage for the updated real part of z. Also, for the threshold test

|z| > 2.0, use abs(z)>2.0 in Fortran, and in C use:

z.creal*z.creal+z.cimag*z.cimag>4.0.

The Code : Sequential

The Monte Carlo method we shall use generates a number of random points in the range

[(−2.0, 0), (0.5, 1.125)] of the complex plane. Then each point will be iterated using the equation above

a finite number of times (say 100000). If within that number of iterations the threshold condition |z| > 2
is satisfied then that point is considered to be outside of the Mandelbrot Set. Then counting the number

of random points within the Set and those outside will reveal a good approximation of the area of the Set.

The template for this code can be found in ∼/OpenMP/*/Mandelbrot/. Implement the Monte Carlo

sampling, looping over all npoints points. For each point, assign z=c(i) and iterate as defined in

the earlier equation, testing for the threshold condition at each iteration. If the threshold condition is not

satisfied, i.e. |z| ≤ 2, then repeat the iteration (up to a maximum number of iterations, say 100,000). If

after the maximum number of iterations the condition is still not satisfied then add one to the total number

of points inside the Set. If the threshold condition is satisfied, i.e. |z| > 2 then stop iterating and move

on to the next point.

Parallelisation

Now parallelise the serial code using the OpenMP directives and library routines that you have learned

so far. The method for doing this is as follows

1. Start a parallel region before the main Monte Carlo iteration loop, making sure that any private,

shared or reduction variables within the region are correctly declared.

2. Distribute the npoints random points across the n threads available so that each thread has an

equal number of the points. For this you will need to use some of the OpenMP library routines.

N.B.: there is no ceiling function in Fortran, so to calculate the number of points on each thread

(nlocal) compute (npoints+n-1)/n instead of npoints/n. Then for each thread the iter-

ation bounds are given by:

ilower = nlocal * myid + 1

iupper = min(npoints, (myid+1)*nlocal)

where myid stores the thread identification number.

3. Rewrite the iteration loop to take into account the new distribution of points.

4. End the parallel region after the iteration loop.

Once you have written the code try it out using 1, 2, 3 and 4 threads. Check that the results are identical

in each case, and compare the time taken for the calculations using the different number of threads.
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Extra Exercise

Write out which iterations are being performed by each thread to make sure all the points are being

iterated.

Exercise 3: Image

The aim of this exercise is to use the OpenMP worksharing directives, specifically the PARALLEL

DO/parallel for directives.

This code reconstructs an image from a version which has been passed through a a simple edge detection

filter. The edge pixel values are constructed from the image using

edgei,j = imagei−1,j + imagei+1,j + image1,j−1 + imagei,j+1 − 4 imagei,j

If an image pixel has the same value as its four surrounding neighbours (i.e. no edge) then the value of

edgei,j will be zero. If the pixel is very different from its four neighbours (i.e. a possible edge) then

edgei,j will be large in magnitude. We will always consider i and j to lie in the range 1, 2, . . .M and

1, 2, . . . N respectively. Pixels that lie outside this range (e.g. imagei,0 or imageM+1,j) are simply

considered to be set to zero.

Many more sophisticated methods for edge detection exist, but this is a nice simple approach.

The exercise is actually to do the reverse operation and construct the initial image given the edges. This

is a slightly artificial thing to do, and is only possible given the very simple approach used to detect the

edges in the first place. However, it turns out that the reverse calculation is iterative, requiring many

successive operations each very similar to the edge detection calculation itself. The fact that calculating

the image from the edges requires a large amount of computation, makes it a much more suitable program

than edge detection itself for the purposes of timing and parallel scaling studies.

As an aside, this inverse operation is also very similar to a large number of real scientific HPC calculations

that solve partial differential equations using iterative algorithms such as Jacobi or Gauss-Seidel.

Parallelisation

The code for this exercise can be found in ∼/OpenMP/*/Image/.

The file notlac.dat contains the initial data.

The code can be parallelised by adding PARALLEL DO/parallel for directives to the three routines

new2old, jacobistep and residue, taking care to correctly identify shared, private and reduction

variables. Hint: use default(none). Remember to add the -mp compiler flag. You can view the

final image using display, though this is a poor test for correctness: better to compare the final residue

value to the sequential code.

Use the script image.sct to submit to the batch queue and record the execution time on up to 8 threads,

and calculate the speedup and efficiency achieved. Try to answer the following questions:

• Where is synchronisation taking place?

• Where is communication taking place?

Extra exercise

Redo Exercise 2 using worksharing directives.
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Extra exercise (Fortran only)

Implement the routine new2old using Fortran 90 array syntax, and parallelise with a PARALLEL

WORKSHARE directive. Compare the performance of the two versions.

Exercise 4: Load imbalance

This exercise will demonstrate the use of the SCHEDULE/schedule clause to improve performance of

a parallelised code.

The Goldbach Conjecture

In the world of number theory, the Goldbach Conjecture states that:

Every even number greater than two is the sum of two primes.

In this exercise you are going to write a code to test this conjecture. The code will find the number

of Goldbach pairs (that is, number of pairs of primes p1, p2 such that p1 + p2 = i) for i = 2, . . . , 8000.

The computational cost is proportional to i3/2, so for optimal performance on multiple threads the work

load must be intelligently distributed using the OpenMP SCHEDULE/schedule clause.

The Code

The template for the code can be found in ∼/OpenMP/*/Goldbach/.

1. Initialise the array numpairs to zero.

2. Create a do/for loop which loops over i and sets each element of the array numpairs to the

returned value of a function goldbach(2*i). This array will contain the number of Goldbach

pairs for each even number up to 8000.

3. Once the number of Goldbach pairs for each even number has been calculated, test that the Gold-

bach conjecture holds true for these numbers, that is, that for each even number greater than two

there is at least one Goldbach pair.

Your output should match these results:

Even number Goldbach pairs

2 0

802 16

1602 53

2402 37

3202 40

4002 106

4802 64

5602 64

6402 156

7202 78

Table 1: Example output for Goldbach code
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Parallelisation

Parallelise the code using OpenMP directives around the do/for loop which calls the goldbach function.

Validate that the code is still working when using more than one thread, and then experiment with the

schedule clause to try and improve performance.

Extra Exercise

1. Print out which thread is doing each iteration so that you can see directly the effect of the different

scheduling clauses.

2. Try running the loop in reverse order, and using the GUIDED schedule.
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