
Shared Memory

Programming

Synchronisation

Why is it required?

Recall:

• Need to synchronise actions on shared variables.

• Need to ensure correct ordering of reads and writes.

• Need to protect updates to shared variables (not atomic by default)

BARRIER directive

• No thread can proceed past a barrier until all the other threads have
arrived.

• Note that there is an implicit barrier at the end of DO/FOR,
SECTIONS and SINGLE directives.

• Syntax:

Fortran: !$OMP BARRIER

C/C++: #pragma omp barrier

• Either all threads or none must encounter the barrier: otherwise
DEADLOCK!!

BARRIER directive (cont)

Example:

!$OMP PARALLEL PRIVATE(I,MYID,NEIGHB)

myid = omp_get_thread_num()

neighb = myid - 1

if (myid.eq.0) neighb = omp_get_num_threads()-1

...

a(myid) = a(myid)*3.5

!$OMP BARRIER

b(myid) = a(neighb) + c

...

!$OMP END PARALLEL

• Barrier required to force synchronisation on a

NOWAIT clause

• The NOWAIT clause can be used to suppress the implicit barriers at
the end of DO/FOR, SECTIONS and SINGLE directives. (Barriers are
expensive!)

• Syntax:

Fortran: !$OMP DO

do loop

!$OMP END DO NOWAIT

C/C++: #pragma omp for nowait

for loop

• Similarly for SECTIONS and SINGLE .

NOWAIT clause (cont)

Example: Two loops with no dependencies

!$OMP PARALLEL

!$OMP DO

do j=1,n

a(j) = c * b(j)

end do

!$OMP END DO NOWAIT

!$OMP DO

do i=1,m

x(i) = sqrt(y(i)) * 2.0

end do

!$OMP END PARALLEL

NOWAIT clause

• Use with EXTREME CAUTION!

• All too easy to remove a barrier which is necessary.

• This results in the worst sort of bug: non-deterministic behaviour
(sometimes get right result, sometimes wrong, behaviour changes
under debugger, etc.).

• May be good coding style to use NOWAIT everywhere and make all
barriers explicit.

NOWAIT clause (cont)
Example:

!$OMP DO SCHEDULE(STATIC,1)

do j=1,n

a(j) = b(j) + c(j)

end do

!$OMP DO SCHEDULE(STATIC,1)

do j=1,n

d(j) = e(j) * f

end do

!$OMP DO SCHEDULE(STATIC,1)

do j=1,n

z(j) = (a(j)+a(j+1)) * 0.5

end do

Can remove the first

barrier, or the second,

but not both, as there is
a dependency on a

Critical sections

• A critical section is a block of code which can be executed by only
one thread at a time.

• Can be used to protect updates to shared variables.

• The CRITICAL directive allows critical sections to be named.

• If one thread is in a critical section with a given name, no other thread
may be in a critical section with the same name (though they can be

in critical sections with other names).

CRITICAL directive

• Syntax:

Fortran: !$OMP CRITICAL [(name)]

block

!$OMP END CRITICAL [(name)]

C/C++: #pragma omp critical [(name)]

structured block

• In Fortran, the names on the directive pair must match.

• If the name is omitted, a null name is assumed (all unnamed critical
sections effectively have the same null name).

CRITICAL directive (cont)

Example: pushing and popping a task stack

!$OMP PARALLEL SHARED(STACK),PRIVATE(INEXT,INEW)

...

!$OMP CRITICAL (STACKPROT)

inext = getnext(stack)

!$OMP END CRITICAL (STACKPROT)

call work(inext,inew)

!$OMP CRITICAL (STACKPROT)

if (inew .gt. 0) call putnew(inew,stack)

!$OMP END CRITICAL (STACKPROT)

...

!$OMP END PARALLEL

ATOMIC directive

• Used to protect a single update to a shared variable.

• Applies only to a single statement.

• Syntax:

Fortran: !$OMP ATOMIC

statement

where statement must have one of these forms:

x = x op expr, x = expr op x, x = intr (x, expr) or

x = intr(expr, x)

op is one of +, *, -, /, .and., .or., .eqv., or .neqv.

intr is one of MAX, MIN, IAND, IOR or IEOR

ATOMIC directive (cont)

C/C++: #pragma omp atomic

statement

where statement must have one of the forms:

x binop = expr, x++, ++x, x--, or --x

and binop is one of +, *, -, /, &, ^, <<, or >>

• Note that the evaluation of expr is not atomic.

• May be more efficient than using CRITICAL directives, e.g. if
different array elements can be protected separately.

• No interaction with CRITICAL directives

ATOMIC directive (cont)

Example (compute degree of each vertex in a graph):

#pragma omp parallel for

for (j=0; j<nedges; j++){

#pragma omp atomic

degree[edge[j].vertex1]++;

#pragma omp atomic

degree[edge[j].vertex2]++;

}

Lock routines

• Occasionally we may require more flexibility than is provided by
CRITICAL and ATOMIC directions.

• A lock is a special variable that may be set by a thread. No other
thread may set the lock until the thread which set the lock has unset

it.

• Setting a lock can either be blocking or non-blocking.

• A lock must be initialised before it is used, and may be destroyed
when it is not longer required.

• Lock variables should not be used for any other purpose.

Lock routines - syntax

Fortran:

USE OMP_LIB

SUBROUTINE OMP_INIT_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_SET_LOCK(OMP_LOCK_KIND var)

LOGICAL FUNCTION OMP_TEST_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_UNSET_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_DESTROY_LOCK(OMP_LOCK_KIND var)

var should be an INTEGER of the same size as addresses (e.g. INTEGER*8

on a 64-bit machine)

OMP_LIB defines OMP_LOCK_KIND

Lock routines - syntax

C/C++:

#include <omp.h>

void omp_init_lock(omp_lock_t *lock);

void omp_set_lock(omp_lock_t *lock);

int omp_test_lock(omp_lock_t *lock);

void omp_unset_lock(omp_lock_t *lock);

void omp_destroy_lock(omp_lock_t *lock);

There are also nestable lock routines which allow the same thread to
set a lock multiple times before unsetting it the same number of times.

Lock example
Example (compute degree of each vertex in a graph):

for (i=0; i<nvertexes; i++){

omp_init_lock(lockvar[i]);

}

#pragma omp parallel for

for (j=0; j<nedges; j++){

omp_set_lock(lockvar[edge[j].vertex1]);

degree[edge[j].vertex1]++;

omp_unset_lock(lockvar[edge[j].vertex1]);

omp_set_lock(lockvar[edge[j].vertex2]);

degree[edge[j].vertex2]++;

omp_unset_lock(lockvar[edge[j].vertex2]);

}

Choosing synchronisation

• As a rough guide, use ATOMIC directives if possible, as these allow
most optimisation.

• If this is not possible, use CRITICAL directives. Make sure you use
different names wherever possible.

• As a last resort you may need to use the lock routines, but this should
be quite a rare occurrence.

Practical Session

Molecular dynamics part 1

• Aim: Introduction to atomic updates

• The code supplied is a simple molecular dynamics simulation of the
melting of solid argon.

• Computation is dominated by the calculation of force pairs in
subroutine forces.

• Parallelise this routine using a DO/FOR directive and atomic updates.
Watch out for PRIVATE and REDUCTION variables.

