
Shared Memory

Programming

More about parallel loops

LASTPRIVATE clause

• Sometimes need the value a private variable would have had on exit
from loop (normally undefined).

Syntax:

Fortran: LASTPRIVATE(list)

C/C++: lastprivate(list)

• Also applies to sections directive (variable has value assigned to it in
the last section.)

LASTPRIVATE clause (cont)

Example:

!$OMP PARALLEL

!$OMP DO LASTPRIVATE(i)

do i=1,func(l,m,n)

d(i)=d(i)+e*f(i)

end do

ix = i-1

. . .

!$OMP END PARALLEL

SCHEDULE clause

• The SCHEDULE clause gives a variety of options for specifying which
loops iterations are executed by which thread.

• Syntax:

Fortran: SCHEDULE (kind[, chunksize])

C/C++: schedule (kind[, chunksize])

where kind is one of

STATIC, DYNAMIC, GUIDED or RUNTIME

and chunksize is an integer expression with positive value.

• E.g. !$OMP DO SCHEDULE(DYNAMIC,4)

STATIC schedule

• With no chunksize specified, the iteration space is divided into
(approximately) equal chunks, and one chunk is assigned to each
thread in order (block schedule).

• If chunksize is specified, the iteration space is divided into chunks,
each of chunksize iterations, and the chunks are assigned cyclically
to each thread in order (block cyclic schedule)

STATIC schedule

DYNAMIC schedule

• DYNAMIC schedule divides the iteration space up into chunks of size
chunksize, and assigns them to threads on a first-come-first-served
basis.

• i.e. as a thread finish a chunk, it is assigned the next chunk in the list.

• When no chunksize is specified, it defaults to 1.

GUIDED schedule

• GUIDED schedule is similar to DYNAMIC, but the chunks start off
large and get smaller exponentially.

• The size of the next chunk is proportional to the number of remaining
iterations divided by the number of threads.

• The chunksize specifies the minimum size of the chunks.

• When no chunksize is specified it defaults to 1.

DYNAMIC and GUIDED schedules

RUNTIME schedule

• The RUNTIME schedule defers the choice of schedule to run time,
when it is determined by the value of the environment variable
OMP_SCHEDULE.

• e.g. export OMP_SCHEDULE=”guided,4”

• It is illegal to specify a chunksize in the code with the RUNTIME
schedule.

Choosing a schedule

When to use which schedule?

• STATIC best for load balanced loops - least overhead.

• STATIC,n good for loops with mild or smooth load imbalance, but can

induce overheads.

• DYNAMIC useful if iterations have widely varying loads, but ruins data

locality.

• GUIDED often less expensive than DYNAMIC, but beware of loops

where the first iterations are the most expensive!

• Use RUNTIME for convenient experimentation.

ORDERED directive

• Can specify code within a loop which must be done in the order it
would be done if executed sequentially.

• Syntax:

Fortran: !$OMP ORDERED

block

!$OMP END ORDERED

C/C++: #pragma omp ordered

structured block

• Can only appear inside a DO/FOR directive which has the ORDERED
clause specified.

• Main use is in testing to force ordering of output

ORDERED directive (cont)

Example:

!$OMP PARALLEL DO ORDERED

do j=1,n

. . .

!$OMP ORDERED

write(*,*) j,count(j)

!$OMP END ORDERED

. . .

end do

!$OMP END PARALLEL DO

Practical session

Finding Goldbach pairs

• Aim: experiment with loop schedules.

• The Goldbach conjecture says that every even number greater than 2
is the sum of 2 primes.

• For the first 4000 even numbers, find all pairs of primes which sum to
the even number.

• Computational cost rises as n3/2, giving an unbalanced load

• Parallelise with a DO directive, and experiment with different schedule
options.

