Shared Memory
Programming

Work sharing directives

EPSRC e




-
Work sharing directives

Directives which appear inside a parallel region
and indicate how work should be shared out
between threads

Parallel do/for loops
Parallel sections

Fortran 90 array syntax
‘One thread only’ directives

N Y E
. J
N ~7 ¢
~ -
arcnenr A DEE( I
/[ _@' Q__;}
DIND®




-
Parallel do loops

Loops are the most common source of parallelism in most codes. Parallel
loop directives are therefore very important!

A parallel do/for loop divides up the iterations of the loop between threads.

There is a synchronisation point at the end of the loop: all threads
must finish their iterations before any thread can proceed

We will just introduce the basic form here: more details will follow in the next
session.

epce




-
Parallel do/for loops (cont)

Syntax:
Fortran:
1$SOMP DO [clauses]
do loop
[ '$OMP END DO ]
C/C++:

#pragma omp for [clauses]
for loop

\}v_\‘- 1V E/?
Nr~7 @
~ 3
arcnenr N peaq &
NON:
g QX
& &
“OTN \,’\}




Restrictions in C/C++

Because the for loop in C is a general while loop, there are
restrictions on the form it can take.

It has to have determinable trip count - it must be of the form:
for (var = a; var logical-opb; Incr-exp)

where logical-op is one of <, <=, >
and incr-expis var = var +/- incr Or semantic
equivalents such as var++.

Also cannot modify var within the loop body.

epce

4 >=




-
Parallel do/for loops (cont)

With no additional clauses, the DO/FOR directive will partition the
iterations as equally as possible between the threads.

However, this is implementation dependent, and there is still some

ambiguity:
e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2

epce




Parallel do/for loops (cont)

How can you tell if a loop is parallel or not?
Useful test: if the loop gives the same answers if it is run in reverse
order, then it is almost certainly parallel

Jumps out of the loop are not permitted.

do i=2,n
a(i)=2*a(i-1) :>‘<:

end do

e.g.

epce



Parallel do/for loops (cont)

2.
ix = base
do i=1,n
a(ix) = a(ix)*b (i) :>K<:
ix = 1ix + stride
end do
3.

do i=1,n
b(i)= (a(i)-a(i-1))*0.5 \/
end do
archer




e
Parallel do loops (example)

Example:

1SOMP PARALLEL
1SOMP DO
do i=1,n
b(i) = (a(i)—-a(i-1))*0.5
end do
1SOMP END DO
1SOMP END PARALLEL

\}v_\‘- 1V E/?
- Qf@ " ’/)
~ .
arcne i pEiq |
NN
A
"’/)[ N \,’\}




T
Parallel DO/FOR directive

This construct is so common that there is a shorthand form which
combines parallel region and DO/FOR directives:

Fortran:
!SOMP PARALLEL DO [clauses]
do loop
[ '$OMP END PARALLEL DO ]
C/C++:

#pragma omp parallel for [clauses]
for loop

epcc




-
Clauses

DO/FOR directive can take PRIVATE and FIRSTPRIVATE clauses
which refer to the scope of the loop.

Other clauses will be discussed in the next session.

Note that the parallel loop index variable is PRIVATE by default
other loop indices are private by default in Fortran, but not in C.

PARALLEL DO/FOR directive can take all clauses available for
PARALLEL directive.

epce




Parallel sections

Allows separate blocks of code to be executed in parallel (e.g. several
independent subroutines)

There is a synchronisation point at the end of the blocks: all threads
must finish their blocks before any thread can proceed

Not scalable: the source code determines the amount of parallelism
available.

Rarely used, except with nested parallelism - see later!

epce




00
Parallel sections (cont)

Syntax:
Fortran:
1SOMP SECTIONS [clauses]
[ '$OMP SECTION |/
block
[ '$SOMP SECTION
block |

1SOMP END SECTIONS

epcc

<
>
T
~
~
-
-




00
Parallel sections (cont)

C/C++:
#pragma omp sections [clauses]

{

[ #pragma omp section |
structured-block

[ #pragma omp section
structured-block

-]

epce @




I
Parallel sections (cont)

Example:
|$OMP PARALLEL
1$OMP SECTIONS
1$OMP SECTION

call init (x)
1$OMP SECTION

call init (y)
1$OMP SECTION

call init (z)
1$OMP END SECTIONS
1$OMP END PARALLEL

idle

init(x) |init(y) |init(z)




Parallel sections (cont)

SECTIONS directive can take PRIVATE, FIRSTPRIVATE,
LASTPRIVATE (see later) and clauses.

Each section must contain a structured block: cannot branch into or
out of a section.

epce




00
Parallel section (cont)

Shorthand form:

Fortran:
!SOMP PARALLEL SECTIONS [clauses]

1SOMP END PARALLEL SECTIONS

C/C++:
#pragma omp parallel sections [clauses]

{

epcc




e
Workshare directive

A worksharing directive (!) which allows parallelisation of Fortran 90
array operations, WHERE and FORALL constructs.

Syntax:
! SOMP WORKSHARE

block
1SOMP END WORKSHARE [NOWAIT]

epcc




-
Workshare directive (cont.)

Simple example
REAL A(100,200), B(100,200), C(100,200)

!SOMP PARALLEL

! SOMP WORKSHARE
A=B+C

1SOMP END WORKSHARE

1SOMP END PARALLEL

N.B. No schedule clause: distribution of work units to threads is entirely up to
the compiler!

There is a synchronisation point at the end of the workshare: all threads must
finish their work before any thread can proceed

epcc




Workshare directive (cont.)

Can also contain array intrinsic functions, WHERE and FORALL

constructs, scalar assignment to shared variables, ATOMIC and
CRITICAL directives.

No branches in or out of block.

No function calls except array intrinsics and those declared
ELEMENTAL.

Combined directive:
1SOMP PARALLEL WORKSHARE

block
1SOMP END PARALLEL WORKSHARE

epce




-
Workshare directive (cont.)

Example:

1SOMP PARALLEL WORKSHARE

A=B+C

WHERE (D .ne. 0) E = 1/D
1 SOMP ATOMIC

t = t + SUM(F)

FORALL (i=1l:n, X(i)=0) X(i)= 1
1SOMP END PARALLEL WORKSHARE




-
SINGLE directive

Indicates that a block of code is to be executed by a single thread
only.

The first thread to reach the SINGLE directive will execute the block

There is a synchronisation point at the end of the block: all the other
threads wait until block has been executed.

epcc



-
SINGLE directive (cont)

Syntax:
Fortran:
!SOMP SINGLE [clauses]

block
1SOMP END SINGLE

C/C++:
#pragma omp single [clauses]
structured block

\}".\‘ilv[f
@ N
= -
arcne A pEaq &
(‘A/:. .-B. Q";’
OIN®




I
SINGLE directive (cont)

Example:
#pragma omp parallel
( setup
setup setup setup
setup (x) ;
#pragma omp single i :
{ i input | !
idlle  idtle :
input (y) ; i ; | idle
} | | |
work (x,y) ;
} work work work work




-
SINGLE directive (cont)

SINGLE directive can take PRIVATE and FIRSTPRIVATE clauses.

Directive must contain a structured block: cannot branch into or out of
it.

epcc




I
MASTER directive

Indicates that a block of code should be executed by the master
thread (thread 0) only.

There is no synchronisation at the end of the block: other threads skip
the block and continue executing: N.B. different from SINGLE in this
respect. This generally means you need to combine it with a barrier

epce



e
MASTER directive (cont)

Syntax:
Fortran:
1 SOMP MASTER

block
1SOMP END MASTER

C/C++:

#pragma omp master
structured block

\3".\‘11\}[94,
@ y~7 €
~ .
arcnmnenr X DEE &
A AS
J- X
& <
“OTN s




Practical session

Image processing
Aim: Introduction to the use of parallel do/for loops.

Simple image processing algorithm to reconstruct and image from an
edge-detected version.

Use PARALLEL DO/FOR directives to run it in parallel

epce




