
Shared Memory

Programming

Work sharing directives

Work sharing directives

• Directives which appear inside a parallel region

and indicate how work should be shared out

between threads

• Parallel do/for loops

• Parallel sections

• Fortran 90 array syntax

• ‘One thread only’ directives

Parallel do loops

• Loops are the most common source of parallelism in most codes. Parallel

loop directives are therefore very important!

• A parallel do/for loop divides up the iterations of the loop between threads.

• There is a synchronisation point at the end of the loop: all threads

must finish their iterations before any thread can proceed

• We will just introduce the basic form here: more details will follow in the next

session.

Parallel do/for loops (cont)

Syntax:
Fortran:

!$OMP DO [clauses]

do loop

[!$OMP END DO]

C/C++:

#pragma omp for [clauses]

for loop

Restrictions in C/C++

• Because the for loop in C is a general while loop, there are
restrictions on the form it can take.

• It has to have determinable trip count - it must be of the form:

for (var = a; var logical-op b; incr-exp)

where logical-op is one of <, <=, >, >=

and incr-exp is var = var +/- incr or semantic

equivalents such as var++.

Also cannot modify var within the loop body.

Parallel do/for loops (cont)

• With no additional clauses, the DO/FOR directive will partition the
iterations as equally as possible between the threads.

• However, this is implementation dependent, and there is still some
ambiguity:

e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2

Parallel do/for loops (cont)
• How can you tell if a loop is parallel or not?

• Useful test: if the loop gives the same answers if it is run in reverse
order, then it is almost certainly parallel

• Jumps out of the loop are not permitted.

e.g.

do i=2,n

a(i)=2*a(i-1)

end do

Parallel do/for loops (cont)

2.

ix = base

do i=1,n

a(ix) = a(ix)*b(i)

ix = ix + stride

end do

3.

do i=1,n

b(i)= (a(i)-a(i-1))*0.5

end do

Parallel do loops (example)

Example:

!$OMP PARALLEL

!$OMP DO

do i=1,n

b(i) = (a(i)-a(i-1))*0.5

end do

!$OMP END DO

!$OMP END PARALLEL

Parallel DO/FOR directive

• This construct is so common that there is a shorthand form which
combines parallel region and DO/FOR directives:

Fortran:

!$OMP PARALLEL DO [clauses]

do loop

[!$OMP END PARALLEL DO]

C/C++:

#pragma omp parallel for [clauses]

for loop

Clauses

• DO/FOR directive can take PRIVATE and FIRSTPRIVATE clauses
which refer to the scope of the loop.

• Other clauses will be discussed in the next session.

• Note that the parallel loop index variable is PRIVATE by default

• other loop indices are private by default in Fortran, but not in C.

• PARALLEL DO/FOR directive can take all clauses available for
PARALLEL directive.

Parallel sections

• Allows separate blocks of code to be executed in parallel (e.g. several
independent subroutines)

• There is a synchronisation point at the end of the blocks: all threads
must finish their blocks before any thread can proceed

• Not scalable: the source code determines the amount of parallelism
available.

• Rarely used, except with nested parallelism - see later!

Parallel sections (cont)

Syntax:

Fortran:

!$OMP SECTIONS [clauses]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END SECTIONS

Parallel sections (cont)

C/C++:

#pragma omp sections [clauses]

{

[#pragma omp section]

structured-block

[#pragma omp section

structured-block

. . .]

}

Parallel sections (cont)
Example:

!$OMP PARALLEL

!$OMP SECTIONS

!$OMP SECTION

call init(x)

!$OMP SECTION

call init(y)

!$OMP SECTION

call init(z)

!$OMP END SECTIONS

!$OMP END PARALLEL

Parallel sections (cont)

• SECTIONS directive can take PRIVATE, FIRSTPRIVATE,
LASTPRIVATE (see later) and clauses.

• Each section must contain a structured block: cannot branch into or
out of a section.

Parallel section (cont)

Shorthand form:

Fortran:

!$OMP PARALLEL SECTIONS [clauses]

. . .

!$OMP END PARALLEL SECTIONS

C/C++:

#pragma omp parallel sections [clauses]

{

. . .

}

Workshare directive

• A worksharing directive (!) which allows parallelisation of Fortran 90
array operations, WHERE and FORALL constructs.

• Syntax:

!$OMP WORKSHARE

block

!$OMP END WORKSHARE [NOWAIT]

Workshare directive (cont.)

• Simple example

REAL A(100,200), B(100,200), C(100,200)

...

!$OMP PARALLEL

!$OMP WORKSHARE

A=B+C

!$OMP END WORKSHARE

!$OMP END PARALLEL

• N.B. No schedule clause: distribution of work units to threads is entirely up to
the compiler!

• There is a synchronisation point at the end of the workshare: all threads must
finish their work before any thread can proceed

Workshare directive (cont.)

• Can also contain array intrinsic functions, WHERE and FORALL
constructs, scalar assignment to shared variables, ATOMIC and
CRITICAL directives.

• No branches in or out of block.

• No function calls except array intrinsics and those declared
ELEMENTAL.

• Combined directive:

!$OMP PARALLEL WORKSHARE

block

!$OMP END PARALLEL WORKSHARE

Workshare directive (cont.)

• Example:

!$OMP PARALLEL WORKSHARE

A = B + C

WHERE (D .ne. 0) E = 1/D

!$OMP ATOMIC

t = t + SUM(F)

FORALL (i=1:n, X(i)=0) X(i)= 1

!$OMP END PARALLEL WORKSHARE

SINGLE directive

• Indicates that a block of code is to be executed by a single thread
only.

• The first thread to reach the SINGLE directive will execute the block

• There is a synchronisation point at the end of the block: all the other

threads wait until block has been executed.

SINGLE directive (cont)

Syntax:

Fortran:

!$OMP SINGLE [clauses]

block

!$OMP END SINGLE

C/C++:

#pragma omp single [clauses]

structured block

SINGLE directive (cont)
Example:

#pragma omp parallel

{

setup(x);

#pragma omp single

{

input(y);

}

work(x,y);

}

SINGLE directive (cont)

• SINGLE directive can take PRIVATE and FIRSTPRIVATE clauses.

• Directive must contain a structured block: cannot branch into or out of
it.

MASTER directive

• Indicates that a block of code should be executed by the master
thread (thread 0) only.

• There is no synchronisation at the end of the block: other threads skip
the block and continue executing: N.B. different from SINGLE in this
respect. This generally means you need to combine it with a barrier

MASTER directive (cont)
Syntax:

Fortran:

!$OMP MASTER

block

!$OMP END MASTER

C/C++:

#pragma omp master

structured block

Practical session

Image processing

• Aim: Introduction to the use of parallel do/for loops.

• Simple image processing algorithm to reconstruct and image from an
edge-detected version.

• Use PARALLEL DO/FOR directives to run it in parallel

