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Shared memory systems

• OpenMP is designed for programming shared memory parallel 
computers.

• A shared memory computer consists of a number of processors 
together with some memory

• Key feature of shared memory systems is a single address space
across the whole memory system.

• every processor can read and write all memory locations in the 
system

• one logical memory space

• all processors refer to a memory location using the same address 



Shared memory hardware
• Two main types of hardware:

• true shared memory

• distributed shared memory

• Difference is in how memory is physically organised

• one large memory vs. multiple smaller memory units

• Difference is (almost) invisible to the programmer

• some subtle performance implications



True shared memory

Examples: Sun X4600,  all multicore PCs, IBM p575, NEC SX8, Fujitsu 
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Distributed shared memory

Examples: SGI Altix, HP Superdome
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Programming Model

• The programming model for shared memory is based on 

the notion of threads

• threads are like processes, except that threads can share memory 
with each other (as well as having private memory)

• Shared data can be accessed by all threads

• Private data can only be accessed by the owning thread

• Different threads can follow different flows of control 

through the same program

• details of thread/process relationship is very OS dependent



More About Threads

• Usually run one thread per processor

• but could be more

• Threads communicate with each other only via shared 

data (no messages!)

• thread 1 writes a value to a shared variable A

• thread 2 can then read the value from A

• A thread team is a set of threads which co-operate on a 

task.

• The master thread is responsible for co-ordinating the 

team.



Thread Communication
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Threads (cont.)
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Overview of OpenMP

• Directives and sentinels 

• Parallel regions

• Shared and private data  

• Parallel loops 

• Synchronisation

• Reductions



Directives and sentinels

• A directive is a special line of source code with meaning only to 
certain compilers. 

• A directive is distinguished by a sentinel at the start of the line.

• OpenMP sentinels are:

• Fortran: !$OMP (or C$OMP or *$OMP for F77)

• C/C++: #pragma omp



Parallel region

• The parallel region is the basic parallel construct in OpenMP. 

• A parallel region defines a section of a program.

• Program begins execution on a single thread (the master thread).

• When the first parallel region is encountered, the master thread 
creates a team of threads (fork/join model).

• Every thread executes the statements which are inside the parallel 
region

• At the end of the parallel region, the master thread waits for the other 
threads to finish, and continues executing the next statements



Parallel region
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Shared and private data

• Inside a parallel region, variables can either be shared or private.

• All threads see the same copy of shared variables. 

• All threads can read or write shared variables.

• Each thread has its own copy of private variables: these are invisible 

to other threads.

• A private variable can only be read or written by its own thread.



Parallel loops

• Loops are the main source of parallelism in many applications.

• If the iterations of a loop are independent (can be done in any order) 
then we can share out the iterations between different threads. 

• e.g. if we have two threads and the loop                    

do i = 1, 100

a(i) = a(i) + b(i) 

end do

we could do iteration 1-50 on one thread and iterations 51-100 on 
the other.      



Synchronisation

• Need to ensure that actions on shared variables occur in the correct order: 
e.g. 

thread 1 must write variable A before thread 2 reads it, 

or

thread 1 must read variable A before thread 2 writes it. 

• Note that updates to shared variables (e.g. a = a + 1) are not atomic!
• If two threads try to do this at the same time, one of the updates may get 

overwritten.



Synchronisation example
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Reductions
• A reduction produces a single value from associative operations 

such as addition, multiplication, max, min, and, or. 

• For example:

b = 0;

for (i=0; i<n; i++)

b += a[i];

• Allowing only one thread at a time to update b would remove all 

parallelism.

• Instead, each thread can accumulate its own private copy, then 
these copies are reduced to give final result.



Brief history of OpenMP 

• Historical lack of standardisation in shared memory directives. Each 
vendor did their own thing.

• mainly directive based, almost all for Fortran

• previous attempt at standardisation (ANSI X3H5, based on work of Parallel 
Computing forum) failed due to political reasons and lack of vendor interest.

• OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now includes 
most major vendors (and some academic organisations, including 
EPCC).

• OpenMP Fortran standard released October 1997, minor revision (1.1) 
in November 1999. Major revision (2.0) in November 2000.



History (cont.)

• OpenMP C/C++ standard released October 1998. Major revision (2.0) 
in March 2002.

• Combined OpenMP Fortran/C/C++ standard (2.5) released in May 
2005.

• no new features, but extensive rewriting and clarification

• Version 3.0 released in May 2008

• new features, including tasks, better support for loop parallelism 
and nested parallelism

• only beta compilers available just now



OpenMP resources

• Web sites:

www.openmp.org

• Official web site: language specifications, links to compilers and tools, 
mailing lists

www.compunity.org

• OpenMP community site: more links, events, resources

• Books:
• “Using OpenMP: Portable Shared Memory Parallel Programming” 

Chapman, Jost and Van der Pas, MIT Press, ISBN: 0262533022 

• “Parallel Programming in OpenMP”, Chandra et. al., Morgan 
Kaufmann, ISBN 1558606718.



Compiling

• OpenMP is built in to most FORTRAN, C and C++ compilers

• To compile an OpenMP program type with the GNU compilers: 

Fortran:    gfortran -fopenmp -o prog prog.f

C: gcc -fopenmp -o prog prog.c

PGI compilers: -mp

Intel compilers: -openmp



Running

To run an OpenMP program: 

• Set the number of threads using the environment variable 
OMP_NUM_THREADS

e.g.   export OMP_NUM_THREADS=8 (bash/ksh)

or      setenv OMP_NUM_THREADS 8 (csh/tcsh)

• Can run just as you would a sequential program.  



Running on ARCHER

#!/bin/bash --login

#PBS -N testprog

#PBS -l select=2

#PBS -l walltime=0:10:00

#PBS -A y07

cd /work/y07/y07/guest01

cp /work/y07/y07/guest01/testprog .

export OMP_NUM_THREADS=12

aprun -n 1 -N 1 -d $OMP_NUM_THREADS ./testprog



Practical session

Hello World

• Aim: to compile and run a trivial program.

• Vary the number of threads using the OMP_NUM_THREADS 

environment variable. 

• Run the code several times - is the output always the same? 


