
Message Passing 

Concepts



Message Passing Model

• The message passing model is based on the notion of 

processes

• can think of a process as an instance of a running program, 
together with the program’s data

• In the message passing model, parallelism is achieved by 

having many processes co-operate on the same task

• Each process has access only to its own data

• Processes communicate with each other by sending and 

receiving messages



Process Communication

a=23 Recv(1,b)

Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1



SPMD

• Most message passing programs use the Single-

Program-Multiple-Data (SPMD) model

• All processes run the same program

• Each process has a separate copy of the data

• To make this useful, each process has a unique identifier

• Processes can follow different control paths through the 

program, depending on their process ID 

• Usually run one process per processor 



Messages

• A message transfers a number of data items of a certain 
type from the memory of one process to the memory of 
another process

• A message typically contains
• the ID of the sending processor

• the ID of the receiving processor

• the type of the data items

• the number of data items

• the data itself

• a message type identifier 



Communication modes

• Sending a message can either be synchronous or 

asynchronous

• A synchronous send is not completed until the message 

has started to be received 

• An asynchronous send completes as soon as the 

message has gone

• Receives are usually synchronous - the receiving process 

must wait until the message arrives



Synchronous send

• Analogy with faxing a letter.

• Know when letter has started to be received.



Asynchronous send
• Analogy with posting a letter.

• Only know when letter has been posted, not when it has been 

received.



Point-to-Point Communications

• We have considered two processes

• one sender

• one receiver

• This is called point-to-point communication

• simplest form of message passing

• relies on matching send and receive

• Close analogy to sending personal emails



Collective Communications

• A simple message communicates between two processes

• There are many instances where communication between 

groups of processes is required

• Can be built from simple messages, but often 

implemented separately, for efficiency



Broadcast

• From one process to all others

8

8 8

8

8

8



Scatter

• Information scattered to many processes

0 1 2 3 4 5

0

1

3

4

5

2



Gather

• Information gathered onto one process

0 1 2 3 4 5

0

1

3

4

5

2



Reduction

• Form a global sum, product, max, min, etc.

0

1

3

4

5

2

15



Issues

• Sends and receives must match

• danger of deadlock

• Possible to write very complicated programs

• most scientific codes have a simple structure

• often results in simple communications patterns

• Use collective communications where possible

• may be implemented in efficient ways



Summary

• Messages are the only form of communication

• all communication is therefore explicit

• Most systems use the SPMD model

• all processes run exactly the same code

• each has a unique ID

• processes can take different branches in the same codes

• Basic form is point-to-point

• collective communications implement more complicated patterns 
that often occur in many codes 


