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Combine QM and MMQM/MM

Combine Quantum Mechanics and Molecular Mechanics
QM/MM

Separate system in QM and MM part, single out electrons to be
treated by QM
Define potential energy surface

V (R) = VQM(R) + VMM(R) + Vint(R)

Find solutions to many technical problems.

V (R) = VQM(R) + VMM(R) + Vint(R)

full atomistic by 
classical FF



Combine QM and MM

QM: modelling of electronic rearrangements!

MM: efficient inclusion of wider environment!

Choice of QM method (semi empirical, DFT, QC)!

Choice of the force field!

Partitioning and treatment of the boundary



738,000 atoms - 50 nanometers

P.D. Blood and G.A. Voth, PNAS, 103, 2006, pp. 15068-15072
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Ligand binding affinity in docking!
Free energy simulations!

Complex biomolecular structures
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Combined Quantum Mechanics/Molecular Mechanics (QM/MM)
Methods in Computational Enzymology
Marc W. van der Kamp* and Adrian J. Mulholland*

Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.

ABSTRACT: Computational enzymology is a rapidly maturing field that is
increasingly integral to understanding mechanisms of enzyme-catalyzed reactions
and their practical applications. Combined quantum mechanics/molecular
mechanics (QM/MM) methods are important in this field. By treating the
reacting species with a quantum mechanical method (i.e., a method that calculates
the electronic structure of the active site) and including the enzyme environment
with simpler molecular mechanical methods, enzyme reactions can be modeled.
Here, we review QM/MM methods and their application to enzyme-catalyzed
reactions to investigate fundamental and practical problems in enzymology. A
range of QM/MM methods is available, from cheaper and more approximate
methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how
modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing
some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that
show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the
interpretation and prediction of the effects of mutagenesis and in drug and catalyst design.

Enzymes are both essential and extraordinary due to their
phenomenal capability to catalyze biochemical reactions

efficiently, typically with high specificity and under mild,
physiological conditions. Understanding how enzymes achieve
these remarkable feats is not only one of the most important
fundamental problems in biology, it will also contribute to a
range of technological applications such as designing inhibitors
that serve as lead compounds in drug discovery, predicting the
metabolism of drugs, and designing catalysts for specific
transformations. A wide variety of experiments in structural
biology, enzyme kinetics, and mutagenesis have given insight
into enzymes. Because of the complexity of enzymes and the
difficulty of studying reactions in them, however, many
questions and uncertainties remain, giving rise to many heated
debates in enzymology. Computational modeling and simu-
lation, with their unique potential to offer detailed, atomic-
resolution insight into the dynamics and reactions of
biomolecules,1 can help resolve such controversial questions
by interpreting, complementing, and expanding results
obtained from experiment. Perhaps most obviously, calculations
can study transition state structures, which are central to
reactivity but cannot be studied directly by experiments on
enzymes.
Computational enzymology can be defined broadly as the

study of enzymes and their reaction mechanisms by molecular
modeling and simulation. This field has matured rapidly in
recent years, and increasingly experimental and computational
enzymologists are collaborating to explain experimental data
(see, e.g., refs 2 and 3) and use insights from modeling to guide
further experiments. A number of different types of simulation
have proved useful in computational enzymology. Combined
quantum mechanics/molecular mechanics (QM/MM) meth-

ods have been involved in this field,4,5 ever since the pioneering
work of Warshel and Levitt in 1976.6 The desire to model
reactions within enzymes has been an important driving force
in the development of QM/MM methods. This review will
primarily focus on QM/MM methods in computational
enzymology; other simulation and modeling methods are also
important in this field. In particular, the empirical valence bond
(EVB) approach (which typically uses a combination of
molecular mechanics representations rather than a molecular
mechanics and an electronic structure QM method) has
provided many fundamental insights into enzyme catalysis.7−9

Calculations that employ QM methods only10 also provide a
good route to modeling many enzyme mechanisms, differing
from QM/MM calculations mostly in the size of the system
that can be modeled. In this review, we discuss different types
of QM/MM methods, their scope, and practical considerations
in their application to modeling enzyme reactions. We indicate
how QM/MM methods have contributed to debates on the
sources of enzyme catalytic power and provide detailed insight
into individual mechanisms. We further highlight how modeling
of reactions with QM/MM methods is contributing to
developments in drug design, drug metabolism, and biocatalyst
design. QM/MM methods are also being applied to other types
of problems in biomolecular science, e.g., in the calculation of
spectroscopic properties, photochemistry, pKa’s, and predic-
tions of ligand binding affinities in docking and free energy
simulations,11−17 but such applications are outside the scope of
this review.
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QMMM: overview

simoX technology
Yoshio Tanaka (AIST) and Aiichiro Nakano (USC)
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0.11 million atoms!
5 QM regions: effects of O implantation into Si!

adaptive QM regions
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MM Environment
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Empirical Force Fields
Interatomic Potentials

Intra-molecular Interactions
Reducing the Complexity

Parameterization and Transferability
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TopologyAlanine for CHARMM

Alanine Topology Entry

RESI ALA 0.00
GROUP
ATOM N NH1 -0.47 ! |
ATOM HN H 0.31 ! HN-N
ATOM CA CT1 0.07 ! | HB1
ATOM HA HB 0.09 ! | /
GROUP ! HA-CA--CB-HB2
ATOM CB CT3 -0.27 ! | \
ATOM HB1 HA 0.09 ! | HB3
ATOM HB2 HA 0.09 ! O=C
ATOM HB3 HA 0.09 ! |
GROUP !
ATOM C C 0.51
ATOM O O -0.51
BOND CB CA N HN N CA
BOND C CA C +N CA HA CB HB1 CB HB2 CB HB3
DOUBLE O C
IMPR N -C CA HN C CA +N O
DONOR HN N
ACCEPTOR O C
IC -C CA *N HN 1.3551 126.4900 180.0000 115.4200 0.9996
IC -C N CA C 1.3551 126.4900 180.0000 114.4400 1.5390
IC N CA C +N 1.4592 114.4400 180.0000 116.8400 1.3558
IC +N CA *C O 1.3558 116.8400 180.0000 122.5200 1.2297
IC CA C +N +CA 1.5390 116.8400 180.0000 126.7700 1.4613
IC N C *CA CB 1.4592 114.4400 123.2300 111.0900 1.5461
IC N C *CA HA 1.4592 114.4400 -120.4500 106.3900 1.0840
IC C CA CB HB1 1.5390 111.0900 177.2500 109.6000 1.1109
IC HB1 CA *CB HB2 1.1109 109.6000 119.1300 111.0500 1.1119
IC HB1 CA *CB HB3 1.1109 109.6000 -119.5800 111.6100 1.1114

The entries in the topology file provide the following information:

3 RESI ALA 0.00

indicates a new residue with the name ALA and total charge of 0.00.

4 GROUP

indicates that the following atoms (up to the next GROUP command) are
part of a “group” of atoms which carries an integer charge. Groups are
often made up of atoms which interact electronically, sharing electron
density.

5 ATOM N NH1 -0.47 ! |

indicates a new atom with the name N, the type NH1, and a charge of
-0.47. The ! sign is a comment signal. Anything appearing after it on
the line will be ignored. Thus, the stick representation of alanine is simply
a comment in the file. It is only there so the user may see the topology
of the residue. Note that atoms N, HN, CA, and HA form a group with net
charge 0.00.

6 BOND CB CA N HN N CA

indicates sets of 2 atoms which are connected by a single bond. The bonds
are created between consecutive atoms. Thus, one bond is placed between

9



MM CP2K input
&FORCE_EVAL 
  METHOD FIST !
  &MM !
    &FORCEFIELD 
       PARM_FILE_NAME acn.pot 
       PARMTYPE CHM 
       &CHARGE 
        ATOM CT 
        CHARGE -0.479 
       &END CHARGE 
       &CHARGE 
        ATOM YC 
        CHARGE  0.481 
       &END CHARGE 
       &CHARGE 
        ATOM YN 
        CHARGE -0.532 
       &END CHARGE 
       &CHARGE 
        ATOM HC 
        CHARGE  0.177 
       &END CHARGE 
    &END FORCEFIELD !!

!
    &POISSON 
      &EWALD 
        EWALD_TYPE SPME 
        ALPHA .44 
        GMAX 32 
        O_SPLINE 6 
      &END EWALD 
    &END POISSON !
  &END MM !
  &SUBSYS 
    &CELL 
      ABC 27.0 27.0 27.0 
    &END CELL 
    &TOPOLOGY 
      CONNECTIVITY PSF 
      CONN_FILE_NAME  acn_topology.psf 
      COORD_FILE_NAME acn_topology.pdb 
      COORDINATE      pdb 
    &END TOPOLOGY 
  &END SUBSYS 
  STRESS_TENSOR ANALYTICAL 
&END FORCE_EVAL



Subtractive QM/MM
E

total

= E
MM,tot

+ E
QM(QM)

� E
MM(QM)

MM FF also for active region!

QM density not polarised



Subtractive QM/MM
E

total

= E
MM,tot

+ E
QM(QM)

� E
MM(QM)

MM FF also for active region!

QM density not polarised
&MULTIPLE_FORCE_EVALS 
   FORCE_EVAL_ORDER 1 2 3 4 
&END MULTIPLE_FORCE_EVALS !
&FORCE_EVAL 
  METHOD MIXED 
  &MIXED 
    MIXING_TYPE GENMIX 
    &GENERIC 
      # X: Energy force_eval 2 
      # Y: Energy force_eval 3 
      # Z: Energy force_eval 4 
      MIXING_FUNCTION X+Y-Z 
      VARIABLES X Y Z 
   &END GENERIC 
  &END MIXED 
  &SUBSYS 
    &TOPOLOGY 
     CONNECTIVITY PSF 
     CONN_FILE_NAME topo.psf 
     COORD_FILE_NAME totsys.xyz 
    &END TOPOLOGY 
    &CELL 
      ABC  19.729 19.729 19.729 
    &END CELL 
  &END SUBSYS 
 &END FORCE_EVAL 

!
&FORCE_EVAL 
  METHOD FIST 
  &MM  
    ……… 
  &END MM 
  &SUBSYS 
    &TOPOLOGY 
     CONNECTIVITY PSF 
     CONN_FILE_NAME topo.psf 
     COORD_FILE_NAME totsys.xyz 
    &END TOPOLOGY 
    &CELL 
      ABC  19.729 19.729 19.729 
    &END CELL 
  &END SUBSYS 
 &END FORCE_EVAL !!!!
&FORCE_EVAL 
  METHOD QS 
  &DFT  
    ……… 
  &END DFT !

!
  &SUBSYS 
    &TOPOLOGY 
      COORD_FILE_NAME qmsys.xyz 
    &END TOPOLOGY 
    &CELL 
      ABC  19.729 19.729 19.729 
    &END CELL 
  &END SUBSYS 
 &END FORCE_EVAL !
&FORCE_EVAL 
  METHOD FIST 
  &MM  
    ……… 
  &END MM 
  &SUBSYS 
    &TOPOLOGY 
     CONNECTIVITY PSF 
     CONN_FILE_NAME qmtopo.psf 
     COORD_FILE_NAME qmsys.xyz 
    &END TOPOLOGY 
    &CELL 
      ABC  19.729 19.729 19.729 
    &END CELL 
  &END SUBSYS 
 &END FORCE_EVAL



Additive QM/MM
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E
total

= E
MM,tot

+ E
QM(QM)

+ E
QM/MM

EMM(QM) = Eel
MM(QM) + Evdw

MM(QM) + Eb
MM(QM)

Electrostatic coupling is the most 
involved term!

Mechanical embedding possible!

Linked atom scheme!

vdW might need ad hoc 
parameterisation
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Available Electrostatic Schemes
QMMM:overview GEEP Application: cOVD ConclusionQMMM Schemes

Cost ≈ NMM * P1

QM box

MM box

on the same
cell on which is defined 



Available Electrostatic Schemes
QMMM:overview GEEP Application: cOVD ConclusionQMMM Schemes

Spherical Cutoff

Cost ≈ Nc
MM * P1

QM box

MM box



Multi-pole!

Expansion
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QM box

MM box

A. Laio, J. VandeVondele, U. Rothlisberger , J. Chem. Phys., 116, 2002, pp. 6941

Available Electrostatic Schemes
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QM/MM
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QM/MM
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ETOT(RQM,RMM) = EQM(RQM) + EMM(RMM) + EQM/MM(RQM,RMM)

EQM/MM(RQM,RMM) =
X

MM

qMM

Z
n(r)

|r�RMM|dr+
X

QM,MM

uvdW(RQM,RMM)



QM/MM

Gaussians

Plane Waves
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Gaussian charge distribution

n(r,RMM) =

✓
rc,MMp
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◆3
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vMM(r,RMM) =
Erf

⇣
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|r�RMM|

prevent spill out problem!
accelerate calculations of electrostatics



GEEP
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Distance
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Sum of functions with different cutoffs, derived from the new 
Gaussian expansion of the electrostatic potential

small r. In the contest of QM/MM calculations,37,38 the MM
charges have been Gaussian smeared as a means to repair
the broken covalent bonds at the QM/MM boundaries. In
contrast here, we do not address the issue of treating QM/
MM regions crossed by a covalent bond, and the smearing
of all MM charges is exploited in order to prevent the spill-
out problem and to accelerate the calculation of the electro-
static interactions.
Due to the Coulomb long-range behavior, the computa-

tional cost of the integral in eq 2 is surprisingly large. When
using a localized basis set like GTOs, the most natural way
to handle this term is to modify the one-electron Hamiltonian
by adding to it the contribution of the MM classical field

φµ and φν being Gaussian basis functions and qa the atomic
charge of classical atom a with coordinates ra. In this case
a suitable prescreening procedure has to be applied for the
integral evaluation, to effectively compute only the nonzero
terms and thus avoiding the quadratically scaling construction
of the core Hamiltonian with respect to the number of
elements of the basis set. When using a fully delocalized
basis set like PWs, on the other hand, the QM/MM
interaction term is evaluated by modifying the external
potential and collocating on the grid nodes the contribution
coming from the MM potential. Unfortunately the number
of operations that a direct evaluation of eq 2 requires is of
the order of NuNMM, where Nu is the number of grid points,
usually of the order of 106 points, and NMM is the number of
classical atoms, usually of the order of 104 or more in systems
of biochemical interest. It is evident that in a real system a
brute force computation of the integral in eq 2 is imprac-
tical.

GEEP: Gaussian Expansion of the QM/MM
Electrostatic Potential
The key to our method is the efficient decomposition of the
electrostatic potential in terms of Gaussian functions with

different cutoffs. The most general representation of the
electrostatic potential eq 3 in terms of Gaussian functions
with different cutoffs is

where the smoothed Coulomb potential is expressed as a sum
of Ng Gaussian functions and of a residual function Rlow.
The Ag are the amplitudes of the Gaussian functions, and
Gg are their width. If the parameters Ag and Gg are properly
chosen, the residual function Rlow will be smooth, i.e., its
Fourier transform will have a compact domain for very small
g vectors, and will be approximately zero for g . Gcut. The
Gcut parameter is related to the spacing of the grid on which
the Rlow function will be mapped. We performed the fit of
eq 5 by a least-squares approach in Fourier space, using the
analytical expression of the g-representation of the modified
electrostatic potential:39

In Figure 1 we show the result of the fitting procedure in
G-space with rc,a) 1.1 Å, comparing the Fourier components
of the modified Coulomb potential with the Fourier com-
ponents of the residual function Rlow. In this case the compact
support of Rlow is truncated at Gcut ≈ 1.0 which should be
compared with the value of Gcut ≈ 3.0 needed to achieve
the same accuracy when using Va(r,ra). This implies that the
residual function can be mapped on a grid with a spacing 1
order of magnitude bigger than the one required to map the
Va function.
In Figure 1 we show the same result of the fit in real space,

and in Table 1 we provide coefficients for selected values
of rc,a.
The advantage of this decomposition scheme is that grids

of different spacing can be used to represent the different

Figure 1. On the left: Gaussian expansion of the electrostatic potential (GEEP). The picture shows the components of the fit
for the value rc,a ) 1.1 Å. On the right: Fourier transform of the potential in eq 3 (in red) and Fourier transform of the residual
function Rlow in eq 5 (in green). For this particular case (rc,a ) 1.1) we can define for the residual function a Gcut ≈ 1.0.
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Multigrid Framework
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Ni+1 = 8Ni
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Multigrid Framework

interpolate

interpolate

interpolate restrict

restrict

restrict

Cubic Splines
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Collocation in the QM Box
EQM/MM(RQM,RMM) =

Z
n(r,RQM)V QM/MM(r,RMM)dr

potential on the finest QM grid

optimal!
grid levels!

!
60-80% of time
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QM box



QM box



QM box



compact Gaussian!
functions



compact Gaussian!
functions



compact Gaussian!
functions



compact Gaussian!
functions



















Scaling ~ Nc3
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interpolation !
20-40% of time

Electrostatic Potential



  &QMMM 
!
    &CELL 
      ABC 6.0 6.0 6.0 
    &END CELL 
    USE_GEEP_LIB 9 
    ECOUPL GAUSS 
!
    &MM_KIND H 
      RADIUS 0.44 
    &END MM_KIND 
    &MM_KIND O 
      RADIUS 0.78 
    &END MM_KIND 
!
    &QM_KIND H 
      MM_INDEX 8 9 
    &END QM_KIND 
    &QM_KIND O 
      MM_INDEX 7 
    &END QM_KIND 
!
&END QMMM 

!
&MM 
  ….. 
&END  MM 
!
&DFT 
  …. 
&END DFT 
!
&SUBSYS 
  &CELL 
    ABC 15.0 15.0 15.0 
  &END CELL 
!
  &TOPOLOGY 
    COORD_FILE_NAME sys.pdb 
    COORDINATE pdb 
  &END TOPOLOGY 
&END SUBSYS



Extension to PBC

How to handle the electrostatic potential in presence of 
periodic boundary conditions (PBC)?

Ewald Summation scheme:
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Extension to PBC

How to handle the electrostatic potential in presence of 
periodic boundary conditions (PBC)?

Ewald Summation scheme:

Reciprocal space

Real space
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Total ES Energy
n(r) = nQM(r) + nMM(r)



Total ES Energy
n(r) = nQM(r) + nMM(r)

background charge
±nB



Total ES Energy
n(r) = nQM(r) + nMM(r)

background charge

ETOT =
1

2

Z Z
drdr0

n(r)n(r0)

|r� r0|

EQM =
1

2

Z Z
drdr0

(nQM(r) + nB,QM)(nQM(r0) + nB,QM)

|r� r0|

EMM =
1

2

Z Z
drdr0

(nMM(r) + nB,MM)(nMM(r0) + nB,MM)

|r� r0|

EQM/MM =

Z Z
drdr0

(nQM(r) + nB,QM)(nMM(r0) + nB,MM)

|r� r0|

±nB
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GEEP with  PBC
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GEEP with  PBC

T. Laino, F. Mohamed, A. Laio and M. Parrinello, J. Chem. Th. Comp., 2 (5), 2006, pp.1370-1378
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smooth!
coarsest grid



QM/MM real space term
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QM/MM reciprocal space term
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QM/MM reciprocal space term

low cutoff function!
only few k vectors!

needed



  &QMMM 
    
    &CELL 
      ABC 17.320500 17.320500 17.320500 
    &END CELL 
!
    ECOUPL GAUSS 
    USE_GEEP_LIB 6 
!
    &MM_KIND NA 
      RADIUS 1.5875316249000 
    &END MM_KIND 
    &MM_KIND CL 
      RADIUS 1.5875316249000 
    &END MM_KIND 
!
    &PERIODIC 
      GMAX 0.5 
      &MULTIPOLE 
        EWALD_PRECISION 0.00000001 
        RCUT 8.0 
        NGRIDS  20 20 20 
        ANALYTICAL_GTERM 
      &END MULTIPOLE 
    &END PERIODIC 
!
&END QMMM



GEEP Summary
GEEP to speed up the evaluation of a function on a grid!

The speed up factor is ~ (Nf/Nc)3=23(Ngrid-1)!

Usually 3-4 grid levels are used corresponding to a 
speed up of 64-512 ~ 102 times faster than the simple 
collocation algorithm (Interpolations and Restrictions 
account for a negligible amount of time)!

Since the residual function is different from zero only for 
few k vectors, the sum in reciprocal space is restrained to 
few points.!

Small computational overhead between the fully 
periodic and non-periodic

QMMM:overview GEEP Application: cOVD ConclusionQMMM Schemes



Sources of Errors

Cutoff of grid level appropriate to the 
cutoff of the mapped Gaussian (~ 20-25 
points per linear direction)!

Error in Cubic Spline interpolation !

Cutoff of the coarse grid level 
comparable to the cutoff of the long 
range function. 
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De-coupling and re-coupling
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De-coupling and re-coupling
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Bloechl Scheme

T. Laino, F. Mohamed, A. Laio and M. Parrinello, J. Chem. Th. Comp., 2 (5), 2006, pp.1370-1378

Density fitting in g-space of the total density!
!
!
!

Reproduce the correct Long-Range electrostatics!
!
!
!
!
Decoupling and Recoupling using these charges

P. E. Bloechl, J. Chem. Phys., 103 (17), 1995, pp.7422-7428
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����

�Ql =

����
Z

dr rlYl (n(r,RQM)� n̂(r,RQM))

����



E’δ

Charged OV
Migration of charged oxygen vacancy defects in silica
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T. Laino, D. Donadio, I-Feng W. Kuo, Phys. Rev. B, 2007
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Charged OV
Migration of charged oxygen vacancy defects in silica
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NEB: Minimum Energy Path
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Figure 2: DFT optimized structures of the five investigated molecules adsorbed on a metallic

surface: (a) nitrobenzene, (b) thymine, (c) guanine, (d) benzene on Au(111) and

(e) water on Pt(111). Color code: orange: C, white: H, blue: N, red : O, yellows:

Au, grey : Pt.

However, for large N

IC

, computing the single Gaussian potentials vb on the full grid can

become a bottleneck for the performance.

The iterative CG scheme can be used as alternative algorithm to solve the set of linear

equations. The expansion coe�cients ca are initially guessed and ⇢m and Vm are calculated.

The CG procedure is then applied to update the coe�cients iteratively until the electrostatic

energy is minimized. At each iteration of the CG, only two FFTs and the calculation of N
IC

numerical integrals are required, which can, in principle, be computationally more e�cient

than the exact calculation of matrix T. However, the CG optimization requires several

iterations that need to be performed at every SCF step. To ensure a fast convergence of

the CG, a proper preconditioning of the gradient is applied. The optimal choice for the

preconditioner is a good approximation of the matrix T. In practice, we always compute

T in the first step. Geometry optimizations and MD simulations can exploit the fact that

the same matrix T can be used as CG preconditioner for several configurations before being

updated. Therefore, the Gaussian elimination scheme is always the method of choice for

single point calculations. The preconditioned-CG is used for geometry optimizations and

MD simulations.

Our implementation is designed to enable simulations of large systems and takes advantage

of the massive parallelization procedures already present in the CP2K program package.

3 Computational details

3.1 Static simulations

The IC-QM/MM approach has been tested on five di↵erent adsorbate-metal systems in-

volving physi- and chemisorbed molecules. These are benzene, nitrobenzene, thymine and

guanine adsorbed on Au(111) as well as water adsorbed on Pt(111). The DFT optimized

structures are displayed in Fig 2. In the case of H2O/Pt, a water dimer and a cluster of 12

molecules have also been considered. The metallic substrates are modeled by a four layer

slab and PBC are applied in all three dimensions. In order to properly accommodate the

nitrobenzene/Au(111)

Siepmann Sprik., JCP (1995) 102 
Golze Iannuzzi Passerone Hutter, JCTC (2013)

QM molecule + EAM metal
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the CG, a proper preconditioning of the gradient is applied. The optimal choice for the

preconditioner is a good approximation of the matrix T. In practice, we always compute
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the same matrix T can be used as CG preconditioner for several configurations before being

updated. Therefore, the Gaussian elimination scheme is always the method of choice for

single point calculations. The preconditioned-CG is used for geometry optimizations and

MD simulations.

Our implementation is designed to enable simulations of large systems and takes advantage

of the massive parallelization procedures already present in the CP2K program package.

3 Computational details

3.1 Static simulations

The IC-QM/MM approach has been tested on five di↵erent adsorbate-metal systems in-

volving physi- and chemisorbed molecules. These are benzene, nitrobenzene, thymine and

guanine adsorbed on Au(111) as well as water adsorbed on Pt(111). The DFT optimized

structures are displayed in Fig 2. In the case of H2O/Pt, a water dimer and a cluster of 12

molecules have also been considered. The metallic substrates are modeled by a four layer

slab and PBC are applied in all three dimensions. In order to properly accommodate the

nitrobenzene/Au(111)

Siepmann Sprik., JCP (1995) 102 
Golze Iannuzzi Passerone Hutter, JCTC (2013)

QM molecule + EAM metal

⇢IC(r) =
X
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CImet exp

⇥
�↵|r�RImet |2
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VH(r) + VIC(r) =

Z
⇢(r0) + ⇢IC(r0)

|r� r0| dr0 = V0

IC induce polarization, solved selfconsistently
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(e) water on Pt(111). Color code: orange: C, white: H, blue: N, red : O, yellows:
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, computing the single Gaussian potentials vb on the full grid can

become a bottleneck for the performance.

The iterative CG scheme can be used as alternative algorithm to solve the set of linear

equations. The expansion coe�cients ca are initially guessed and ⇢m and Vm are calculated.

The CG procedure is then applied to update the coe�cients iteratively until the electrostatic

energy is minimized. At each iteration of the CG, only two FFTs and the calculation of N
IC

numerical integrals are required, which can, in principle, be computationally more e�cient

than the exact calculation of matrix T. However, the CG optimization requires several

iterations that need to be performed at every SCF step. To ensure a fast convergence of

the CG, a proper preconditioning of the gradient is applied. The optimal choice for the

preconditioner is a good approximation of the matrix T. In practice, we always compute

T in the first step. Geometry optimizations and MD simulations can exploit the fact that

the same matrix T can be used as CG preconditioner for several configurations before being

updated. Therefore, the Gaussian elimination scheme is always the method of choice for

single point calculations. The preconditioned-CG is used for geometry optimizations and

MD simulations.

Our implementation is designed to enable simulations of large systems and takes advantage

of the massive parallelization procedures already present in the CP2K program package.

3 Computational details

3.1 Static simulations

The IC-QM/MM approach has been tested on five di↵erent adsorbate-metal systems in-

volving physi- and chemisorbed molecules. These are benzene, nitrobenzene, thymine and

guanine adsorbed on Au(111) as well as water adsorbed on Pt(111). The DFT optimized

structures are displayed in Fig 2. In the case of H2O/Pt, a water dimer and a cluster of 12

molecules have also been considered. The metallic substrates are modeled by a four layer

slab and PBC are applied in all three dimensions. In order to properly accommodate the
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Figure 5: Image charges induced in a 4 layer Au(111) slab by a nitrobenzene molecule.

Charge distribution induced in the first (a) and second (b) metal layer. Magnitude

qi of the induced charges in layer 1-4 (c).

vestigation of induced charges at an atomistic level reveals some interesting features. The

IC distribution induced by nitrobenzene on Au(111) are displayed in the contour plots of

Fig. 5(a) and (b). The induction e↵ect occurs mainly in the first layer, while its magnitude

decreases rapidly with the distance from the surface. Compared to the first layer, charges

induced in the second layer are an order of magnitude smaller. In the third and fourth

layer, the induction e↵ect essentially vanishes, see Fig. 5(c). It is further observed that, as

expected, the electronegative nitro group induces positive charges and the electropositive

benzene ring induces negative image charges in the first layer. The inverse distribution is

found in the second layer.

The total sum of the image charges for the given test system is in the order of 10�2. This

sum is expected to converge to zero when reaching the macroscopic continuum limit [15,18],

i.e. in the limit of an infinite metal slab (see also Fig. S1). However, the finite sum of the

image charges does not correspond to a physical charge since the image charges are merely

a computational tool to impose the correct behavior of the electrostatic potential within the

metal.

4.2.2 Geometries and energetics

For nitrobenzene, thymine and guanine adsorbed on Au(111), full DFT structure optimiza-

tions yield basically a planar geometry of the adsorbate with an adsorbate-surface separation

d

ad�metal

of about 3.1 Å. An almost planar structure has been obtained for benzene/Au(111)

with benzene adsorbed at an fcc threefold hollow site and d

ad�metal

=3.0 Å, which is in agree-

ment with the results reported in Ref. [47]. High symmetry adsorption sites are not ob-

served for nitrobenzene, thymine and guanine. The optimization of the molecular structures

by QM/MM also results in planar geometries, and the metal-molecule separations are in

agreement with the DFT ones. The QM/MM structures are almost unchanged upon the

10

Figure 3: Technical parameters. (a) Dependence of total energy and x-gradients (of an

arbitrary metal atom) on parameter ↵. The x-gradients refer to the image charge

contribution, see Eq. 9. (b) Execution time of a single point calculation of thymine

on Au(111) performed on Cray XK6 system. Note that a double logarithmic scale

is employed.

4 Tests and applications

4.1 Gaussian width ↵ and performance

The only adjustable variable in the IC-QM/MM scheme is the width ↵ of the Gaussian charge

distribution ⇢m, see Eq. 1. To assess the influence of ↵ on the electrostatic interaction energy,

test calculations using the thymine-gold system have been performed. The dependence of

total energy and gradients on the Gaussian width is reported in Fig. 3. For values of ↵ larger

than 3.0 Å�2, neither the total energy nor the image charge contribution to the gradients

show a significant dependency on ↵. However, drastic changes are found for smaller values.

Small values of ↵ correspond to very broad Gaussians, which results in a uniform charge

distribution across the metal, i.e. the Gaussians are no longer localized at the atomic centers.

This leads obviously to non-physical results arising from technical artifacts. Using extremely

large values for ↵ is also not recommendable because very steep Gaussian are not accurately

Z
(VH(r) + VIC(r)� V0) gI(r) =

Z
(VH(r)� V0) gI(r) +

X

J

CJ

Z Z
gJ(r0)gI(r)

|r� r0| drdr0

linear set of eq. (CG iterative scheme)
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Table 3: Interaction Eint (kJ/mol) and adsorption energies Eads (kJ/mol) of water clusters on
Pt(111). Eads includes intermolecular hydrogen bonding EH�bond (kJ/mol per molecule). Ener-
gies are given for the structure optimized with the respective method.

1 H2O 2H2O 12H2O

Eint Eads Eint Eads EH�bond Eint Eads EH�bond

QM/MM �41.6 �37.3 �40.9 �49.2 �10.6 �36.4 �61.9 �26.0
IC-QM/MM �44.2 �43.6 �43.7 �52.9 �10.5 �42.8 �66.6 �24.4
full DFT �44.9 �43.5 �50.6 �56.8 �7.0 �44.2 �63.0 �19.7

with the full DFT results. The deviation is less than 4.0 kJ/mol for all water systems. Comparing

interaction and adsorption energies, it is to note that the latter contain also intermolecular hydrogen

bonding EH�bond resulting in more negative values for the adsorption energies of the clusters.

The increase in dipole moment is almost marginal for a single molecule upon introduction

of polarization. However, the changes in electronic structure are much more pronounced for a

whole water cluster. Table 4 summarizes the results for 12H2O. The dipole moments obtained

with QM/MM and IC-QM/MM have been calculated for the respective structures presented in

Figure 10. The numbering of the molecules corresponds to the one shown in Figure 10. The

dipole moment of a single water molecule in the cluster can be up to 0.7 Debye larger than in gas

phase (1.85 Debye57) due to the formation of hydrogen bonds (H-bonds) with neighboring water

molecules. Significantly larger dipole moments are already obtained by the QM/MM descrip-

tion omitting polarization. Several theoretical58,59 studies have already exhaustively discussed this

phenomenon. For reference, DFT simulations with the PBE functional predict average dipole mo-

ments of bulk water between 3.10 to 3.27 Debye58,60,61. In addition to that, the effect of the IC

polarization induces a further enhancement of the molecular dipoles up to 0.3 Debye. In particu-

lar, molecule 3 undergoes the largest dipole-change. Namely, by introducing the IC polarization,

molecule 3 changes its orientation and moves towards molecule 6 (see Figure 10(a)), strengthen-

ing the corresponding H-bond. In general, the changes in dipole moments are due to both, the

structural changes and the difference in the electrostatic potential given by the image charges.
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Figure 11: Structural and electronic properties obtained for a water film on Pt(111). (a) Typical
snapshot of the water/Pt(111) simulation cell. (b) Snapshot of the water adlayer. (c) Plane-averaged
water density rw along the surface normal. The arrows indicate the division of the water film in
4 different layers. (d) Plane-averaged particle density rp for O and H atoms. (e) Plane-integrated
electronic density difference Dr1D

elec between water and Pt(111).

the water molecules in these regions are expected to be massively overstructured. Further away

from the surface, the density oscillations decay rapidly. For distances larger than 10 Å, the density

corresponds to the one of bulk water. At the liquid-vacuum interface, the density finally decreases

to zero.

For further discussion of structural and electronic properties, the water film was split in four

separate layers guided by the oscillations in the density profile, see Figure 11(c). Radial distribution

functions (RDFs) for each layer are reported for oxygen-oxygen (O-O) and oxygen-hydrogen (O-
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the water molecules in these regions are expected to be massively overstructured. Further away

from the surface, the density oscillations decay rapidly. For distances larger than 10 Å, the density

corresponds to the one of bulk water. At the liquid-vacuum interface, the density finally decreases

to zero.

For further discussion of structural and electronic properties, the water film was split in four

separate layers guided by the oscillations in the density profile, see Figure 11(c). Radial distribution

functions (RDFs) for each layer are reported for oxygen-oxygen (O-O) and oxygen-hydrogen (O-
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Figure 11: Structural and electronic properties obtained for a water film on Pt(111). (a) Typical
snapshot of the water/Pt(111) simulation cell. (b) Snapshot of the water adlayer. (c) Plane-averaged
water density rw along the surface normal. The arrows indicate the division of the water film in
4 different layers. (d) Plane-averaged particle density rp for O and H atoms. (e) Plane-integrated
electronic density difference Dr1D

elec between water and Pt(111).

the water molecules in these regions are expected to be massively overstructured. Further away

from the surface, the density oscillations decay rapidly. For distances larger than 10 Å, the density

corresponds to the one of bulk water. At the liquid-vacuum interface, the density finally decreases

to zero.

For further discussion of structural and electronic properties, the water film was split in four

separate layers guided by the oscillations in the density profile, see Figure 11(c). Radial distribution

functions (RDFs) for each layer are reported for oxygen-oxygen (O-O) and oxygen-hydrogen (O-
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56

Figure 12: Structural properties for the four different layers of the water film defined in Fig-
ure 11(c). (a) Oxygen-oxygen and (b) oxygen-hydrogen RDFs. (c) Distribution of the total number
of H-bonds per molecule.

H) in Figure 12(a) and (b). The curves for the second and third layer resemble RDFs of bulk liquid

water obtained with DFT-PBE in previous studies58,64. The peaks for the water-metal and water-

vacuum layers are located at the same distance. However, the peak heights of the fourth layer are

significantly smaller due the reduced coordination at the water-vacuum interface. Even though the

coordination is also reduced for the adlayer along the z-axis, the peak heights at 2.7 Å (O-O) and

1.7 Å (O-H) are comparable to bulk water. For larger distances, the RDFs decay to values smaller

than 1 and show several additional peaks. This is in agreement with the plane-averaged density

profile predicting an overstructuring in the adlayer which compensates the lacking coordination in

the third dimension for small, but not for large distances.

First insights in the nature of hydrogen bonding at the metallic interface are given by the plane-

averaged distributions of O and H atoms, see Figure 11(d). The onset of the hydrogen distribution

is at shorter distances thanks to the reorientation induced by the polarization of the image charges,

i.e. some H atoms are pointing towards the substrate, which was already observed for the water
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Figure S2: Difference in electronic density Drelec upon adsorption of benzene on Au(111) as ob-
tained by full DFT calculations. (a) Three-dimensional plot. Red regions correspond to increased
and blue regions to decreased electronic density. (b) Plane-integrated electron density difference
Dr1D

elec. Brown spheres indicate the position of the metal layers and the red sphere the position of
the benzene molecule. The cumulative or “running” integral of Dr1D

elec (starting integration from
the vacuum) corresponds to the number of electrons lost (negative) or gained (positive).

Figure S3: Plane-averaged electrostatic potential V 1D
H of 151 H2O on Pt(111) for a particular snap-

shot of the MD simulation. Brown spheres indicate the position of the metal layers. V 1D
H has been

averaged along the surface normal (z-direction).

S2


