RUNNING CP2K IN PARALLEL ON ARCHER

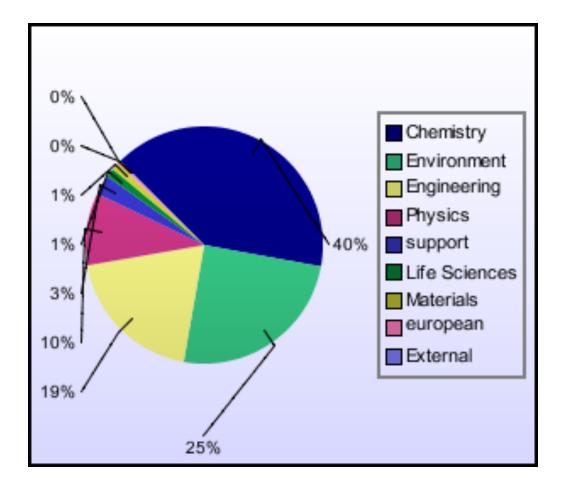
lain Bethune (ibethune@epcc.ed.ac.uk)

Overview

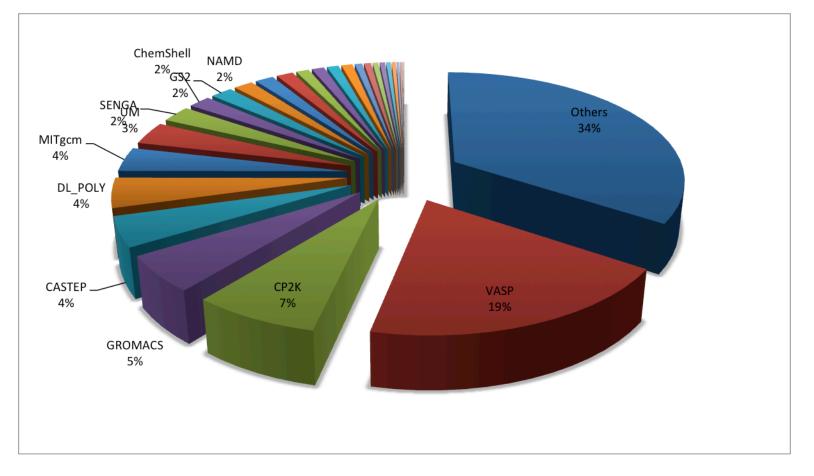
- Introduction to ARCHER
 - Parallel Programming models
- CP2K Algorithms and Data Structures
- Running CP2K on ARCHER
- Parallel Performance
- CP2K Timing Report

- UK National Supercomputing Service
- Cray XC30 Hardware
 - Nodes based on 2×Intel Ivy Bridge 12-core processors
 - 64GB (or 128GB) memory per node
 - 3008 nodes in total (72162 cores)
 - Linked by Cray Aries interconnect (dragonfly topology)
- Cray Application Development Environment
 - Cray, Intel, GNU Compilers
 - Cray Parallel Libraries (MPI, SHMEM, PGAS)
 - DDT Debugger, Cray Performance Analysis Tools

- EPSRC
 - Managing partner on behalf of RCUK
- Cray
 - Hardware provider
- EPCC
 - Service Provision (SP) Systems, Helpdesk, Administration, Overall Management (also input from STFC Daresbury Laboratory)
 - Computational Science and Engineering (CSE) In-depth support, training, embedded CSE (eCSE) funding calls
 - Hosting of hardware datacentre, infrastructure, etc.



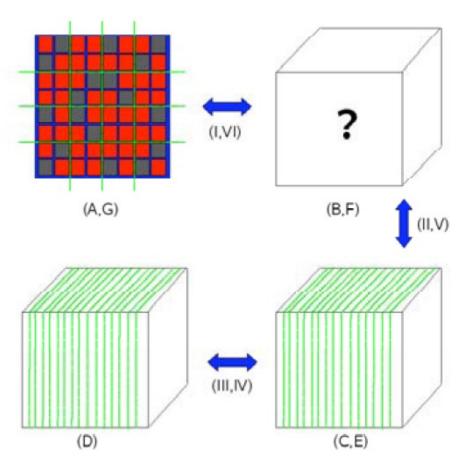
Slater (NSCCS)	ARCHER
Intel Ivy Bridge 2.6GHz	Intel Ivy Bridge 2.7GHz
8-core CPU	24 cores per node (2×12-core NUMA)
4 TB total memory (8 GB/core)	64GB per node (2.66 GB/core) or 128GB per node (5.33 GB/core)
64 CPUs (512 cores)	3008 nodes (72,192 cores)
NUMAlink network	Cray Aries / Dragonfly
	2 Post-processing nodes: 48 core SandyBridge 1TB Memory


- /home NFS, not accessible on compute nodes
 - For source code and critical files
 - Backed up
 - > 200 TB total
- /work Lustre, accessible on all nodes
 - High-performance parallel filesystem
 - Not backed-up
 - > 4PB total
- RDF GPFS, not accessible on compute nodes
 - Long term data storage

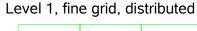
Introduction to ARCHER: Parallel Programming Models

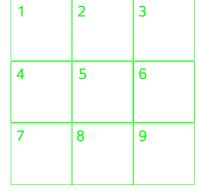
• MPI

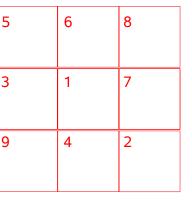
- Message Passing Interface (<u>www.mpi-forum.org</u>)
- Library supplied by Cray (or OpenMPI, MPICH ...)
- Distributed Memory model
- Explicit message passing
- Can scale to 100,000s of cores

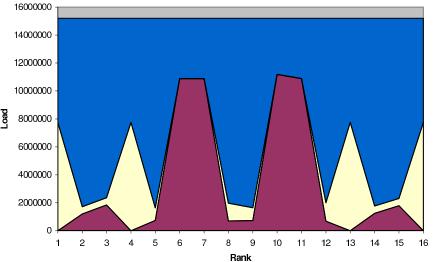

OpenMP

- Open Multi-Processing (<u>www.openmp.org</u>)
- Code directives and runtime library provided by compiler
- Shared Memory model
- Communication via shared data
- Scales up to size of node (24 cores)

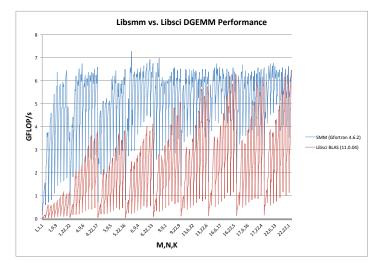

- (A,G) distributed matrices
- (B,F) realspace multigrids
- (C,E) realspace data on planewave multigrids
- (D) planewave grids
- (I,VI) integration/ collocation of gaussian products
- (II,V) realspace-toplanewave transfer
- (III,IV) FFTs
 (planewave transfer)

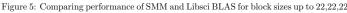





- Distributed realspace grids
 - Overcome memory bottleneck
 - Reduce communication costs
 - Parallel load balancing
 - On a single grid level
 - Re-ordering multiple grid levels
 - Finely balance with replicated tasks

Level 3, coarse grid, replicated

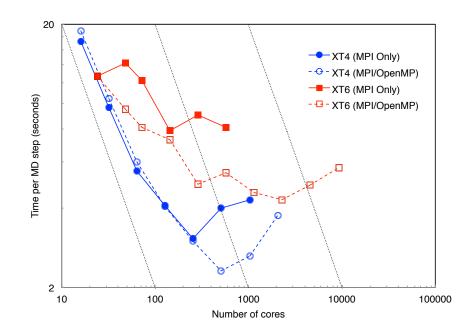



Replicate

Level 0

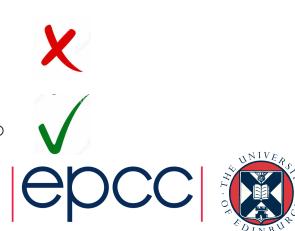
Rank

- Fast Fourier Transforms
 - 1D or 2D decomposition
 - FFTW3 and CuFFT library interface
 - Cache and re-use data
 - FFTW plans, cartesian communicators
- DBCSR
 - Distributed MM based on Cannon's Algorithm
 - Local multiplication recursive, cache oblivious
 - libsmm for small block multiplications



OpenMP

- Now in all key areas of CP2K
- FFT, DBCSR, Collocate/ Integrate, Buffer Packing
- Incremental addition over time


- Dense Linear Algebra
 - Matrix operations during SCF
 - GEMM ScaLAPACK
 - SYEVD ScaLAPACK / ELPA

Running CP2K on ARCHER

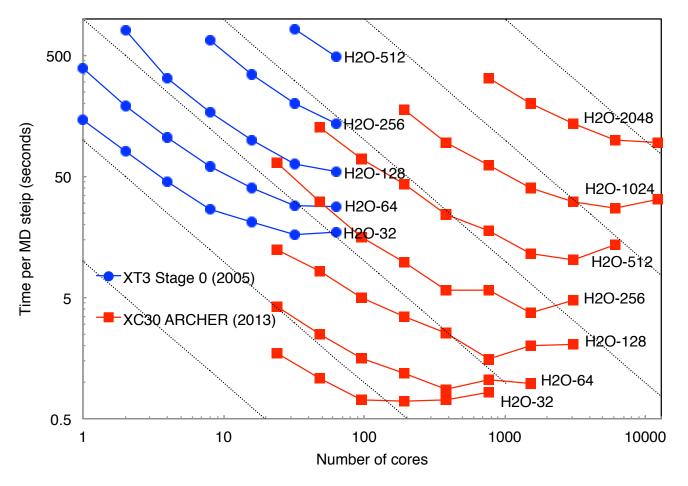
- Full details in the instruction sheet
- Access via (shared) login nodes
- CP2K is installed as a 'module'
 - ~> module load cp2k
- Do not run time-consuming jobs on the login nodes
 - ~> \$CP2K/cp2k.sopt H2O-32.inp
 - ~> \$CP2K/cp2k.sopt --check H2O-32.inp

Running CP2K on ARCHER

- To run in parallel on the compute nodes...
- Create a PBS Batch script:
 - Request some nodes (24 cores each) #PBS -1 select=1
 - For a fixed amount of time #PBS -1 walltime=0:20:0
- Launch CP2K in parallel:

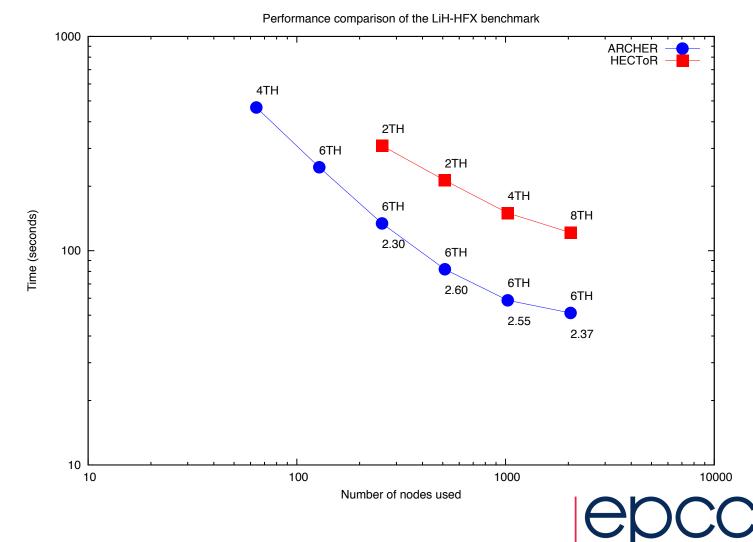
module load cp2k

aprun -n 24 \$CP2K/cp2k.popt H2O-32.inp

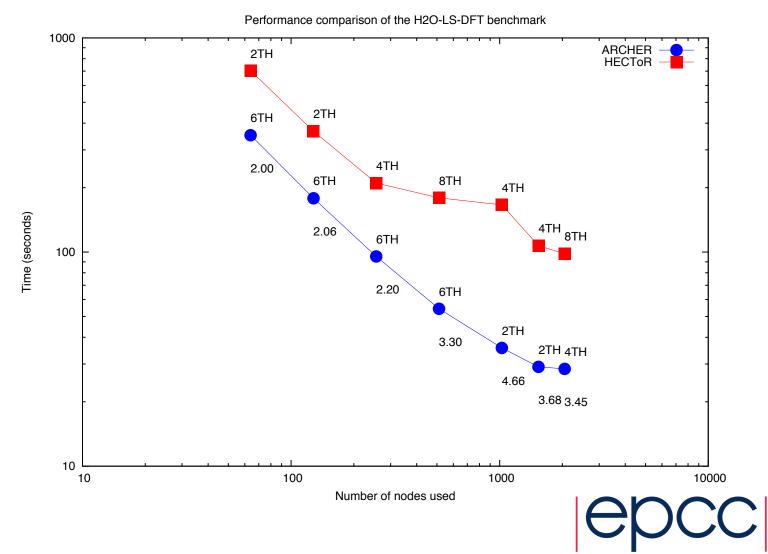


Parallel Performance

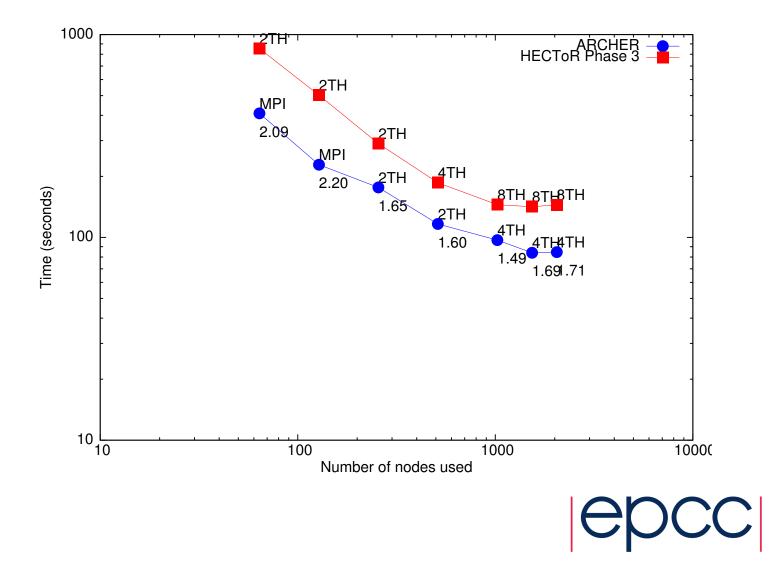
- Different ways of comparing time-to-solution and compute resource...
- Speedup: S = T_{ref} / T_{par}
- Efficiency: $E_p = S_p / p$, good scaling is E > 0.7
- If E < 1, then using more processors uses more compute time (AUs)
- Compromise between overall speed of calculation and efficient use of budget
 - Depends if you have one large or many smaller calculations



Parallel Performance : H2O-xx



Parallel Performance: LiH-HFX



Parallel Performance: H2O-LS-DFT

Parallel Performance: H2O-64-RI-MP2

CP2K Timing Report

CP2K measures are reports time spent in routines and communication
timing reports are printed at the end of the run

-				-					
- MESSAGE PASSING PERFORMANCE -									
DOUTINE	CATIC								
ROUTINE	CALLS	TOT TIME [s]	AVE VOLUME [Bytes]	PERFORMANCE [MB/s]					
MP_Group	4	0.000							
MP_Bcast	186	0.018	958318.	9942.82					
MP Allreduce	1418	0.619	2239.	5.13					
MP_Gather	44	0.321	21504.	2.95					
MP_Sync	1372	0.472							
MP_Alltoall	1961	5.334	323681322.	119008.54					
MP_ISendRecv	337480	0.177	1552.	2953.86					
MP_Wait	352330	5.593							
MP_comm_split	48	0.054							
MP ISend	39600	0.179	14199.	3147.38					
MP_IRecv	39600	0.100	14199.	5638.21					

CP2K Timing Report

-						-
-	TIM	I N G	1			_
-						-
SUBROUTINE	CALLS	ASD		ELF TIME	TOTAL TIME	
Sobioorring	MAXIMUM		AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
CP2K	1		0.018	0.018	57.900	57.900
	1	2.0	0.007	0.0010	57.725	57.737
qs_mol_dyn_low	_					
qs_forces	11	3.9	0.262	0.278	57.492	57.493
qs_energies_scf	11	4.9	0.005	0.006	55.828	55.836
scf_env_do_scf	11	5.9	0.000	0.001	51.007	51.019
<pre>scf_env_do_scf_inner_loop</pre>	99	6.5	0.003	0.007	43.388	43.389
velocity_verlet	10	3.0	0.001	0.001	32.954	32.955
qs scf loop do ot	99	7.5	0.000	0.000	29.807	29.918
ot_scf_mini	99	8.5	0.003	0.004	28.538	28.627
cp_dbcsr_multiply_d	2338	11.6	0.005	0.006	25.588	25.936
dbcsr mm cannon multiply	2338	13.6	2.794	3.975	25.458	25.809
cannon_multiply_low	2338	14.6	3.845	4.349	14.697	15.980
ot_mini	99	9.5	0.003	0.004	15.701	15.942

CP2K Timing Report

- Not just for developers!
 - Check that communication is < 50% of total runtime
 - Check where most time is being spent:
 - Sparse matrix multiplication cp_dbcsr_multiply_d
 - Dense matrix algebra cp_fm_syevd, cp_fm_cholesky_*, cp_fm_gemm
 - FFT fft3d_*
 - Collocate / integrate calculate_rho_elec, integrate_v_rspace

Control level of granularity

&GLOBAL

&TIMINGS

THRESHOLD 0.00001 Default is 0.02 (2%)

&END TIMINGS

&END GLOBAL

After lunch: try it out for yourself in the computer lab...

Any questions?

