SETTING UP A CP2K CALCULATION

Iain Bethune (ibethune@epcc.ed.ac.uk)

Overview

- How to run CP2K
- CP2K Input file
 - The Basics
 - The How FORCE_EVAL
 - The What MOTION
- Basis Sets and Pseudopotential libraries
- CP2K Output
 - Controlling what gets written
 - Overview of an output file
- Restarting a calculation

How to run CP2K

- CP2K binaries:
 - cp2k.version where version =
 - sopt Serial, optimised
 - popt Parallel (MPI), optimised
 - psmp Parallel (MPI) + symmetric multiprocessor (OpenMP)
- Available from <u>http://www.cp2k.org/download</u>
 - Linux binaries (released versions)
 - Also in Linux package managers
 - Source code (released versions and latest trunk), GPL
 - May be pre-installed, e.g. NSCCS, ARCHER ...

How to run CP2K

- Basic command line options:
 - cp2k.sopt -i input_file -o output_file
 - · By default, output goes to the standard output
 - Output to file appends (beware!)
 - Input file is the last argument if not otherwise specified
- Other useful options:
 - cp2k.sopt --version
 - cp2k.sopt --check input_file
 - cp2k.sopt --html-manual
 - cp2k.sopt --help

How to run CP2K

- Typical files associated with a CP2K run:
 - Input (required):
 - e.g. H2O-32.inp (main input file, name and extension are arbitrary)

Optional inputs:

- POTENTIAL (psuedopotential library)
- BASIS_SET (basis set library)
- Structure file (e.g. psf, xyz, crd ...)
- ...

• Outputs:

- PROJECT-1.restart (input file to restart calculation)
- PROJECT-pos-1.xyz (trajectory for MD or GEO_OPT)
- PROJECT-1.ener (MD energies, temperature, cons. Q ...)
- PROJECT-1.cell (cell parameters for NPT MD)
- PROJECT-RESTART.wfn (orbitals for restart)

CP2K Input file: The Basics

- Full documentation available online:
 - http://manual.cp2k.org
 - Or generate with --html-manual
- Sections 13 (optional) top level sections

```
&BEGIN section_name [params]
...
&END [section name]
```

Keywords

KEYWORD value KEYWORD [ON|OFF] [YES|NO] [TRUE|FALSE] ... KEYWORD

- Nesting
 - Sections may others sections and keywords

CP2K Input file: The Basics

Basic pre-processing syntax

- @INCLUDE `filename' copy in text from file **@SET VAR value**
- \$VAR
- QIF / QENDIF
- ! or #

- define a variable
- replaced with variable value
- simple logic
- comments

- Units
 - Numerical entries have a default unit (see manual)
 - Specify other units by hand e.g.

ABC [nm] 100 100 100 (or bohr, default is angstrom) EMAX SPLINE [eV] 50 (or Ry, joule, default is hartree)

Also combinations e.g. [hartree*bohr^-2]

CP2K Input file: The Basics

• GLOBAL section (required) & GLOBAL PROJECT H20-32 RUN TYPE MD PRINT LEVEL HIGH &TIMINGS THRESHOLD 0.00001 & END WALLTIME 3600 &END GLOBAL

CP2K Input file: The How

• FORCE_EVAL section (required)

&FORCE_EVAL

METHOD QS (or FIST, QMMM ...)

&DFT

•••

&END DFT

&SUBSYS

•••

&END SUBSYS &END FORCE EVAL

CP2K Input file: The How

&DFT BASIS_SET_FILE_NAME_GTH_BASIS_SETS POTENTIAL FILE NAME POTENTIAL &MGRID CUTOFF 280 REL CUTOFF 30 &END MGRID &OS EPS DEFAULT 1.0E-12 WF INTERPOLATION PS EXTRAPOLATION ORDER 3 &END QS &SCF SCF GUESS ATOMIC &OT ON MINIMIZER DIIS &END OT &PRINT &RESTART OFF &END &END &END SCF &XC &XC FUNCTIONAL Pade & END XC FUNCTIONAL &END XC &END DFT

Basis and PP library files

Parameters for the realspace multi-grids

Quickstep options

Control of SCF procedure, including minimisation scheme

Exchange-Correlation Functional (LDA)

CP2K Input file: The How

&SUBSYS			
&CELL			
ABC 9.8528 9.8528 9.8528			
&END CELL			
# 32 H2O (TIP5P,1bar,300K) a = 9.8528			
&COORD			
0	2.280398	9.146539	5.088696
0	1.251703	2.406261	7.769908
0	1.596302	6.920128	0.656695
•••			
Н	0.837635	8.186808	8.987268
Н	8.314696	10.115534	2.212519
Н	8.687134	8.667252	2.448452
&END COORD			
&KIND H			
BASIS_SET TZV2P-GTH			
POTENTIAL GTH-PADE-q1			
&END KIND			
&KIND O			
BASIS_SET TZV2P-GTH			
POTENTIAL GTH-PADE-q6			
&END KIND			
&END SUBSYS			

Cell definition

Particle coordinates

Could also @include an external file or parse other formats via &TOPOLOGY COORD_FILE_NAME &END TOPOLOGY

Definitions of atomic kinds

Could specify charge, mass ...

CP2K Input file: The What

- MOTION section
 - &MOTION
 - &MD
 - ENSEMBLE NVE
 - STEPS 10
 - TIMESTEP 0.5
 - TEMPERATURE 300.0
 - &END MD
 - &END MOTION
- Also used to control Geometry Optimisation, NEB, Monte Carlo, …

Basis Sets and PP libraries

- CP2K uses Goedecker-Teter-Hutter, seperable Pseudopotentials
 - Several sets of PPs and corresponding optimised basis sets are available
 - See cp2k/tests/QS or online: <u>http://sourceforge.net/p/cp2k/code/HEAD/tree/trunk/cp2k/tests/QS</u>
 - POTENTIAL, GTH_POTENTIALS
 - Wide range of PPs for at many elements LDA (PADE), PBE, BLYP ...
 - BASIS_SET, GTH_BASIS_SET, BASIS_MOLOPT
 - Various qualities / size of basis
 - Make sure Basis and PP match (functional and number of electrons)
 - · Some documentation and references at head of each file

CP2K Output: Controlling what gets written

- The <code>print_level</code> keyword in <code>&GLOBAL</code>
 - SILENT, LOW, MEDIUM (default), HIGH, DEBUG
 - HIGH can give more information if you are interested
 - Also gives some per-process logging in parallel jobs
 - For long MD runs (e.g. classical), recommend using LOW
- Fine grained control is available via print-keys
 - Most input sections contain a &PRINT sub-section
 - Each & PRINT sub-section has further subsections for each quantity that may be printed

CP2K Output: Controlling what gets written

- For example, the &PRINT section in &MOTION contains
 - &CELL
 - &FORCES
 - &TRAJECTORY
 - &VELOCITIES
 - . . .
- Each section has parameters (and defaults) for which print level it is output
 - &TRAJECTORY defaults to LOW
 - &VELOCITIES defaults to HIGH

CP2K Output: Controlling what gets written

- Can also specify frequency of printing via &EACH subsection e.g.
 - &PRINT
 - &CELL
 - &EACH
 - MD 100
 - &END EACH
 - &END CELL
 - &END PRINT
- Control over filenames, file formats etc. at each & PRINT section

CP2K Output: Overview of an output file

Restarting a calculation

- If you need to restart your job...
 - Hardware failure
 - Batch system time limit
 - Need more MD sampling

• ...

- CP2K dumps a restart input file which can be directly rerun
 - cp2k.sopt -i PROJECT-1.restart
 - Continuous numbering of MD steps
 - Stores all state variables (incl. extended system)
 - May want to use SCF_GUESS RESTART

After lunch: try it out for yourself in the computer lab...

Any questions?

