
Introduction to Python
Arno Proeme, ARCHER CSE Team

aproeme@epcc.ed.ac.uk
Attributed in part to Jussi Enkovaara &

Martti Louhivuori, CSC Helsinki

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

h"p://www.archer.ac.uk	
support@archer.ac.uk	

Python origins
• Created early 1990s (Guido van Rossum, CWI)

• Driven by desire to provide more programmer-friendly

alternative to C to speed up application development

•  Inspired by an earlier interactive programming

environment and language (ABC)

• Not created specifically for scientific computing (unlike
e.g. Fortran)

Python now
• Most popular first taught programming language at top 39

US computer science departments

• Used by Youtube, Dropbox, Google, Industrial Light &
Magic, Quant Finance, …

• Version 3.x breaks backwards compatibility with 2.x
•  2.x still most widely used, including in this course

In natural sciences & engineering?
• Used mainly:

•  As a multipurpose workflow environment for data analysis and
visualisation

•  As “glue”, i.e. interface code, to heavy numerical kernels written in
a compiled language like C/C++ or Fortran (e.g. Fluidity, ASE)

•  For rapid prototyping of algorithms
•  For non-HPC simulations

•  Though performance continues to improve and there are
some 100% Python codes (e.g. GPAW), these are still not
widely used for heavy numerics.

Python characteristics
•  Python is a high-level language (compared e.g. to C),

•  Simple syntax, more easily readable code and shorter programs
but
•  Sacrifice some performance due to abstraction overheads
•  Development time considered more valuable than compute time

•  Python is a fully-featured general purpose programming
language (like C, C++, Fortran, Java, etc.)

•  Python supports (but does not enforce) different programming
styles, e.g. object-oriented

•  Python is open source

The Python interpreter
•  Python code is not generally compiled into a standalone

executable, but executed by the Python interpreter, python!

•  Python code contained in a script file (ending in .py) can be
execute by the interpreter as follows:

aproeme$ cat hello.py!
print(“Hello World”)!
aproeme$ python hello.py!
Hello World!

Interactive Python
•  If not supplied with an input script file, the Python

interpreter runs as an interactive Python runtime
environment (a Python shell session)

!
aproeme$ python!

Interactive Python
•  If not supplied with an input script file, the Python

interpreter runs as an interactive Python runtime
environment (a Python shell session)

!
aproeme$ python!
Python 2.7.7 |Anaconda 2.0.1 (x86_64)| (default, Jun 2 2014,
12:48:16) !
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin!
Type "help", "copyright", "credits" or "license" for more
information.!
Anaconda is brought to you by Continuum Analytics.!

>>>!

Interactive Python
•  If not supplied with an input script file, the Python

interpreter runs as an interactive Python runtime
environment (a Python shell session)

!
aproeme$ python!
Python 2.7.7 |Anaconda 2.0.1 (x86_64)| (default, Jun 2 2014,
12:48:16) !
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin!
Type "help", "copyright", "credits" or "license" for more
information.!
Anaconda is brought to you by Continuum Analytics.!

>>> print(“Hello World”)!

Interactive Python
•  If not supplied with an input script file, the Python

interpreter runs as an interactive Python runtime
environment (a Python shell session)

!
aproeme$ python!
Python 2.7.7 |Anaconda 2.0.1 (x86_64)| (default, Jun 2 2014,
12:48:16) !
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin!
Type "help", "copyright", "credits" or "license" for more
information.!
Anaconda is brought to you by Continuum Analytics.!

>>> print(“Hello World”)!
Hello World !

Interactive Python
•  Python shell lets you explore Python functionality directly

without needing to compile your code

•  This is useful for incremental / progressive code development
and rapid prototyping

•  In case of any errors, debugging (TraceBack) information is
provided within the Python shell (which usually does not simply
crash)

•  Once you have worked out how to get Python to do what you
want it to, save the code as a Python script (.py file)

Interactive Python vs Matlab et al
•  The experience of using interactive Python to work,

especially iPython, is similar to using other scripting
languages e.g. Matlab, Mathematica, Maple, R, etc.

• As well as having a good range of scientific libraries
Python is more easily extendable

• As popularity grows more and more packages become
available, Python becomes the preferred workflow shell to
tie everything together

Data types
• Variables in Python are dynamically typed

•  i.e. don’t specify explicitly whether int, string, etc.
•  Type is determined based on format of assigned value or other

variables involved in calculation

X = 1.0!
my_name = Arno!
!
Y = my_name + X !

The slides that follow are attributed to:
 Jussi Enkovaara & Martti Louhivuori, CSC Helsinki

Numerical data types
•  Integers
•  Floats
• Complex numbers
• Basic operations

•  + and –
•  *, / and **
•  Implicit type conversions
•  Be careful with integer division!

x = 4!
y = 6.0!
z = 1.4 + 4.2j!
!
!
>>> 4.0 + 5 – 2!
7.0!
>>> 2.0**2 / 2.0*(4.2-2j)!
(8.4-4j)!
>>> 2/5!
0!
>>> 2./5!
0.4!
!
!

String
• Strings are enclosed by “ or '
• Multiline strings can be defined with three double quotes

 s1 = “very simple string”
 s2 = 'same simple string'
 s3 = “this isn't so simple string”
 s4 = 'is this “complex” string?’
 s5 = “””This is a long string
 expanding to multiple lines,
 so it is enclosed by three “'s”””

 + and * operators with strings:
>>> "Strings can be " + "combined" !
'Strings can be combined'  
>>> "Repeat! " * 3  
'Repeat! Repeat! Repeat! !
!

Data structures
•  Lists
•  Tuples
• No arrays! (wait for NumPy)

Lists
• Python lists are dynamic arrays
•  List items are indexed (index starts from 0)
•  List item can be any Python object, items can be of

different type
• New items can be added to any place in the list
•  Items can be removed from any place in the list

Lists
•  Defining lists
>>> l1 = [3, “egg”, 6.2, 7] !
>>> l2 = [12, [4, 5], 13, 1] !

•  Accessing list elements
>>> l1[0] !
3  
>>> l2[1]!
[4, 5]  
>>> l1[-1]!
7 !

•  Modifying list items
>>> 1[-2] = 4 !
>>> l1
[3, 'egg', 4, 7] !

Lists
•  Adding items to list
>>> l1 = [9, 8, 7, 6]!
>>> l1.append(11) !
>>> l1  
[9, 8, 7, 6, 11] !
>>> l1.insert(1,16)!
>>> l1  
[9, 16, 8, 7, 6, 11] !
>>> l2 = [5, 4] !
>>> l1.extend(l2) !
>>> l1 !
[9, 16, 8, 7, 6, 11, 5, 4] !

•  + and * operators with lists:
>>> [1, 2, 3] + [4, 5, 6]!
[1, 2, 3, 4, 5, 6]  
>>> [1, 2, 3] * 2  
[1, 2, 3, 1, 2, 3]

Lists
•  It is possible to access slices of lists
•  >>> l1 = [0, 1, 2, 3, 4, 5] !
•  >>> l1[0:2]  
[0, 1]  
>>> l1[:2] !

•  [0, 1]  
>>> l1[3:]  
[3, 4, 5]  
>>> l1[0:6:2] !

•  [0, 2, 4]  
>>> l1[::-1]  
[5, 4, 3, 2, 1, 0] !

•  Removing list items
>>> second = l1.pop(2) !
>>> l1  
[0, 1, 3, 4, 5]  
>>> second !
2 !

Tuples
• A tuple is number of comma-separated values, e.g.:
•  >>> t = ‘a’,2,3!
•  t[0]= bla!
•  Traceback (most recent call last):!
•  File “<stdin>”, line 1, in <module>!
•  TypeError: ‘tuple’ object does not support item assignment!

Variables
•  Python variables are references
>>> l1 = [1,2,3,4] !
>>> l2 = l1 !

•  l1 and l2 are references to the same list
•  Modifying l2 changes also l1!
•  >>> l2[0] = 0 !
•  >>> l1  
[0, 2, 3, 4] !

•  Copy can be made by slicing the whole list
•  >>> l3 = l1[:]
•  >>> l3[-1] = 66
•  >>> l1

[0, 2, 3, 4]
•  >>> l3

[0, 2, 3, 66]

Objects
• Object is a software bundle of data (=variables) and

related methods
• Data can be accessed directly or only via the methods

(=functions) of the object
•  In Python, everything is an object
• Methods of object are called with the syntax

•  obj.method
• Methods can modify the data of object or return new

objects

Standard Library
•  Standard library includes:

•  OS interface
•  Basic Maths functions & random number generator
•  Performance measurement
•  Output formatting
•  Data compression
•  Internet access
•  Simple multithreading
•  Logging

Misc.
•  Third party Python packages (modules) are loaded with

•  import modulename!

•  Code blocks are indented

•  Documentation:
•  https://docs.python.org/2.7/
•  http://scipy-lectures.github.io/

