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Python origins 
• Created early 1990s (Guido van Rossum, CWI) 
 
• Driven by desire to provide more programmer-friendly 

alternative to C to speed up application development 
 
•  Inspired by an earlier interactive programming 

environment and language (ABC) 

• Not created specifically for scientific computing (unlike 
e.g. Fortran) 

 



Python now 
• Most popular first taught programming language at top 39 

US computer science departments 

• Used by Youtube, Dropbox, Google, Industrial Light & 
Magic, Quant Finance, … 

• Version 3.x breaks backwards compatibility with 2.x 
•  2.x still most widely used, including in this course 



In natural sciences & engineering? 
• Used mainly: 

•  As a multipurpose workflow environment for data analysis and 
visualisation 

•  As “glue”, i.e. interface code, to heavy numerical kernels written in 
a compiled language like C/C++ or Fortran (e.g. Fluidity, ASE) 

•  For rapid prototyping of algorithms 
•  For non-HPC simulations 

•  Though performance continues to improve and there are 
some 100% Python codes (e.g. GPAW), these are still not 
widely used for heavy numerics. 



Python characteristics 
•  Python is a high-level language (compared e.g. to C),  

•  Simple syntax, more easily readable code and shorter programs 
but 
•  Sacrifice some performance due to abstraction overheads 
•  Development time considered more valuable than compute time 

•  Python is a fully-featured general purpose programming 
language (like C, C++, Fortran, Java, etc.) 

•  Python supports (but does not enforce) different programming 
styles, e.g. object-oriented 

•  Python is open source 

 



The Python interpreter 
•  Python code is not generally compiled into a standalone 

executable, but executed by the Python interpreter, python!

•  Python code contained in a script file (ending in .py) can be 
execute by the interpreter as follows: 

aproeme$ cat hello.py!
print(“Hello World”)!
aproeme$ python hello.py!
Hello World!



Interactive Python 
•  If not supplied with an input script file, the Python 

interpreter runs as an interactive Python runtime 
environment (a Python shell session) 

!
aproeme$ python!



Interactive Python 
•  If not supplied with an input script file, the Python 

interpreter runs as an interactive Python runtime 
environment (a Python shell session) 

!
aproeme$ python!
Python 2.7.7 |Anaconda 2.0.1 (x86_64)| (default, Jun  2 2014, 
12:48:16) !
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin!
Type "help", "copyright", "credits" or "license" for more 
information.!
Anaconda is brought to you by Continuum Analytics.!

>>>!



Interactive Python 
•  If not supplied with an input script file, the Python 

interpreter runs as an interactive Python runtime 
environment (a Python shell session) 

!
aproeme$ python!
Python 2.7.7 |Anaconda 2.0.1 (x86_64)| (default, Jun  2 2014, 
12:48:16) !
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin!
Type "help", "copyright", "credits" or "license" for more 
information.!
Anaconda is brought to you by Continuum Analytics.!

>>> print(“Hello World”)!



Interactive Python 
•  If not supplied with an input script file, the Python 

interpreter runs as an interactive Python runtime 
environment (a Python shell session) 

!
aproeme$ python!
Python 2.7.7 |Anaconda 2.0.1 (x86_64)| (default, Jun  2 2014, 
12:48:16) !
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin!
Type "help", "copyright", "credits" or "license" for more 
information.!
Anaconda is brought to you by Continuum Analytics.!

>>> print(“Hello World”)!
Hello World !



Interactive Python 
•  Python shell lets you explore Python functionality directly 

without needing to compile your code 

•  This is useful for incremental / progressive code development 
and rapid prototyping 

•  In case of any errors, debugging (TraceBack) information is 
provided within the Python shell (which usually does not simply 
crash) 

•  Once you have worked out how to get Python to do what you 
want it to, save the code as a Python script (.py file) 



Interactive Python vs Matlab et al 
•  The experience of using interactive Python to work, 

especially iPython, is similar to using other scripting 
languages e.g. Matlab, Mathematica, Maple, R, etc. 

• As well as having a good range of scientific libraries 
Python is more easily extendable 

• As popularity grows more and more packages become 
available, Python becomes the preferred workflow shell to 
tie everything together 



Data types 
• Variables in Python are dynamically typed 

•  i.e. don’t specify explicitly whether int, string, etc. 
•  Type is determined based on format of assigned value or other 

variables involved in calculation 

X = 1.0!
my_name = Arno!
!
Y = my_name + X !
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Numerical data types 
•  Integers 
•  Floats 
• Complex numbers 
• Basic operations 

•  + and – 
•  *, / and ** 
•  Implicit type conversions 
•  Be careful with integer division! 

x = 4!
y = 6.0!
z = 1.4 + 4.2j!
!
!
>>> 4.0 + 5 – 2!
7.0!
>>> 2.0**2 / 2.0*(4.2-2j)!
(8.4-4j)!
>>> 2/5!
0!
>>> 2./5!
0.4!
!
!



String 
• Strings are enclosed by “ or ' 
• Multiline strings can be defined with three double quotes  

 s1 = “very simple string”  
 s2 = 'same simple string'  
 s3 = “this isn't so simple string”  
 s4 = 'is this “complex” string?’ 
 s5 = “””This is a long string  
 expanding to multiple lines, 
 so it is enclosed by three “'s”””  

 + and * operators with strings:  
>>> "Strings can be " + "combined" !
'Strings can be combined'  
>>> "Repeat! " * 3  
'Repeat! Repeat! Repeat! !
!



Data structures 
•  Lists 
•  Tuples 
• No arrays! (wait for NumPy) 



Lists 
• Python lists are dynamic arrays  
•  List items are indexed (index starts from 0)  
•  List item can be any Python object, items can be of 

different type  
• New items can be added to any place in the list  
•  Items can be removed from any place in the list  



Lists 
•  Defining lists  
>>> l1 = [3, “egg”, 6.2, 7] !
>>> l2 = [12, [4, 5], 13, 1] !

•  Accessing list elements  
>>> l1[0] !
3  
>>> l2[1]!
[4, 5]  
>>> l1[-1]!
7 !

•  Modifying list items  
>>> 1[-2] = 4 !
>>> l1 
[3, 'egg', 4, 7] !

 



Lists 
•  Adding items to list  
>>> l1 = [9, 8, 7, 6]!
>>> l1.append(11) !
>>> l1  
[9, 8, 7, 6, 11] !
>>> l1.insert(1,16)!
>>> l1  
[9, 16, 8, 7, 6, 11] !
>>> l2 = [5, 4] !
>>> l1.extend(l2) !
>>> l1 !
[9, 16, 8, 7, 6, 11, 5, 4] !

•   + and * operators with lists:  
>>> [1, 2, 3] + [4, 5, 6]!
[1, 2, 3, 4, 5, 6]  
>>> [1, 2, 3] * 2  
[1, 2, 3, 1, 2, 3]  



Lists 
•  It is possible to access slices of lists  
•  >>> l1 = [0, 1, 2, 3, 4, 5] !
•  >>> l1[0:2]  
[0, 1]  
>>> l1[:2] !

•  [0, 1]  
>>> l1[3:]  
[3, 4, 5]  
>>> l1[0:6:2] !

•  [0, 2, 4]  
>>> l1[::-1]  
[5, 4, 3, 2, 1, 0] !

•  Removing list items  
>>> second = l1.pop(2) !
>>> l1  
[0, 1, 3, 4, 5]  
>>> second !
2 !



Tuples 
• A tuple is number of comma-separated values, e.g.: 
•  >>> t = ‘a’,2,3!
•  t[0]= bla!
•  Traceback (most recent call last):!
•  File “<stdin>”, line 1, in <module>!
•  TypeError: ‘tuple’ object does not support item assignment!



Variables 
•  Python variables are references  
>>> l1 = [1,2,3,4] !
>>> l2 = l1 !

•  l1 and l2 are references to the same list 
•  Modifying l2 changes also l1!  
•  >>> l2[0] = 0 !
•  >>> l1  
[0, 2, 3, 4] !

•  Copy can be made by slicing the whole list  
•  >>> l3 = l1[:]  
•  >>> l3[-1] = 66 
•   >>> l1 

[0, 2, 3, 4]  
•  >>> l3 

[0, 2, 3, 66]  



Objects 
• Object is a software bundle of data (=variables) and 

related methods  
• Data can be accessed directly or only via the methods 

(=functions) of the object  
•  In Python, everything is an object  
• Methods of object are called with the syntax  

•  obj.method  
• Methods can modify the data of object or return new 

objects  



Standard Library  
•  Standard library includes: 

•  OS interface 
•  Basic Maths functions & random number generator 
•  Performance measurement 
•  Output formatting 
•  Data compression 
•  Internet access 
•  Simple multithreading 
•  Logging 



Misc.  
•  Third party Python packages (modules) are loaded with 

•  import modulename!

•  Code blocks are indented 

•  Documentation: 
•  https://docs.python.org/2.7/ 
•  http://scipy-lectures.github.io/ 


