
MPI on ARCHER

Documentation

See https://www.archer.ac.uk/documentation/user-guide/
– Accessing the service

– Resource Allocation and Job Execution

https://www.archer.ac.uk/documentation/user-guide/
https://www.archer.ac.uk/documentation/user-guide/
https://www.archer.ac.uk/documentation/user-guide/

Access

SSH access: ssh –X login.archer.ac.uk

– flag -X ensures graphics are sent back to your workstation/laptop

Using ssh

– Trivial for Linux (open a terminal)

– Mac (open a terminal)

• local X server must be enabled to display any graphics

– Windows

• require an ssh-client, e.g. putty

– http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

– select SSH -> X11 -> “Enable X11 forwarding”

• require an X server, e.g. xming

– http://sourceforge.net/projects/xming/

Setup

Take a copy of MPP-templates.tar

wget http://archer.ac.uk/training/course-

material/.../Exercises/MPP-templates.tar

– replace “…” by YYY/MM/CourseName_Location

unpack: tar -xvf MPP-templates.tar

Compilers on ARCHER

ARCHER has 3 compilers available
– Intel

– GNU

– Cray

Cray compiler is the default when logging on

Software on ARCHER is controlled using

modules
– the GNU “modules” framework to support multiple software

versions and to create integrated software packages

Default modules example

adrianj@eslogin001:~> module list
Currently Loaded Modulefiles:
 1) modules/3.2.6.7
 2) nodestat/2.2-1.0500.41375.1.85.ari
 3) sdb/1.0-1.0500.43793.6.11.ari
 4) alps/5.0.3-2.0500.8095.1.1.ari
 5) MySQL/5.0.64-1.0000.7096.23.1
 6) lustre-cray_ari_s/2.3_3.0.58_0.6.6.1_1.0500.7272.12.1-
1.0500.44935.7.1
 7) udreg/2.3.2-1.0500.6756.2.10.ari
 8) ugni/5.0-1.0500.0.3.306.ari
 9) gni-headers/3.0-1.0500.7161.11.4.ari
 10) dmapp/6.0.1-1.0500.7263.9.31.ari
 11) xpmem/0.1-2.0500.41356.1.11.ari
 12) hss-llm/7.0.0
 13) Base-opts/1.0.2-1.0500.41324.1.5.ari
 14) craype-network-aries
 15) craype/1.06.05
 16) cce/8.2.0.181
...

Viewing available modules

 There are hundreds of possible modules available to users.
– Beyond the pre-loaded defaults there are many additional packages provided by

Cray

 Users can see all the modules that can be loaded using the
command:
– module avail

 Searches can be narrowed by passing the first few characters
of the desired module, e.g.

adrianj@eslogin001 :~> module avail gc

------------------------------- /opt/modulefiles --------------------------
--
gcc/4.6.1 gcc/4.7.2 gcc/4.8.0
gcc/4.6.3 gcc/4.7.3 gcc/4.8.1(default)

Modifying the default environment

Loading, swapping or unloading modules:
– The default version of any inidividual modules can be loaded by name

• e.g.: module load perftools

– A specific version can be specified after the forward slash.
• e.g.: module load perftools/6.1.0

– Modules can be swapped out in place
• e.g.: module swap intel intel/13.1.1.163

– Or removed entirely
• e.g.: module unload perftools

Modules will automatically change values of variables like
PATH, MANPATH, LM_LICENSE_FILE... etc
– Modules also provide a simple mechanism for updating certain environment

variables, such as PATH, MANPATH, and LD_LIBRARY_PATH
– In general, you should make use of the modules system rather than embedding

specific directory paths into your startup files, makefiles, and scripts

adrianj@eslogin008:~> module show fftw

/opt/cray/modulefiles/fftw/3.3.0.4:

setenv FFTW_VERSION 3.3.0.4

setenv CRAY_FFTW_VERSION 3.3.0.4

setenv FFTW_DIR /opt/fftw/3.3.0.4/sandybridge/lib

setenv FFTW_INC /opt/fftw/3.3.0.4/sandybridge/include

prepend-path PATH /opt/fftw/3.3.0.4/sandybridge/bin

prepend-path MANPATH /opt/fftw/3.3.0.4/share/man

prepend-path CRAY_LD_LIBRARY_PATH /opt/fftw/3.3.0.4/sandybridge/lib

setenv PE_FFTW_REQUIRED_PRODUCTS PE_MPICH

prepend-path PE_PKGCONFIG_PRODUCTS PE_FFTW

setenv PE_FFTW_TARGET_interlagos interlagos

setenv PE_FFTW_TARGET_sandybridge sandybridge

setenv PE_FFTW_TARGET_x86_64 x86_64

setenv PE_FFTW_VOLATILE_PKGCONFIG_PATH

/opt/fftw/3.3.0.4/@PE_FFTW_TARGET@/lib/pkgconfig

prepend-path PE_PKGCONFIG_LIBS

fftw3f_mpi:fftw3f_threads:fftw3f:fftw3_mpi:fftw3_threads:fftw3

module-whatis FFTW 3.3.0.4 - Fastest Fourier Transform in the West

Compilers on ARCHER

 All applications that will run in parallel on the Cray XC
should be compiled with the standard language wrappers.

The compiler drivers for each language are:
– cc – wrapper around the C compiler
– CC – wrapper around the C++ compiler
– ftn – wrapper around the Fortran compiler

 These scripts will choose the required compiler version,
target architecture options, scientific libraries and their
include files automatically from the module environment.

 Use them exactly like you would the original compiler, e.g.
To compile prog1.f90 run
 ftn -c prog1.f90

Compilers on ARCHER

 The scripts choose which compiler to use from the PrgEnv module loaded

 Use module swap to change PrgEnv, e.g.

– module swap PrgEnv-cray PrgEnv-intel

 PrgEnv-cray is loaded by default at login. This may differ on other Cray

systems.

– use module list to check what is currently loaded

 The Cray MPI module is loaded by default (cray-mpich).

– To support SHMEM load the cray-shmem module.

 The drivers automatically support an MPI build

– No need to use specific wrappers such as mpiifort, mpicc

PrgEnv Description Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC

PrgEnv-intel Intel Composer Suite ifort, icc, icpc

PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++

Compiling MPI Programs ARCHER

Fortran programmers use ftn

C programmers use cc (CC for C++)

There is nothing magic about these compilers!
– simply wrappers which automatically include various libraries etc

– compilation done by standard compilers

• ifort and icc

• gfortran and gcc

• craycc and crayftn

You can use the supplied Makefiles for convenience
– make –f Makefile_c

– make –f Makefile_f90

Easiest to make a copy of one of these called “Makefile”
– also need to change the line “MF=“ in the Makefile itself

Running interactively

All jobs on ARCHER must be run through the batch
system
– This controls resource allocation and usage

– Ensures fair access, charges usage against budgets, etc…

General batch jobs are run for you
– No access to the running job, cannot see what is happening until the job

finishes.

 It is possible to do interactive runs so you can run the MPI
program yourself (although you still don’t get access to the
compute nodes)
– To submit a interactive job reserving 8 nodes (192 cores) for 1 hour you

would use the following qsub command:

qsub -IVl select=8,walltime=1:0:0 -A [project code]

– When you submit this job your terminal will display something like:

qsub: waiting for job 492383.sdb to start

Running on ARCHER

Run via a batch system
– ARCHER uses PBS (Portable Batch System)
– submit a script that then launches your program

In MPP-templates/ is a standard batch script:
mpibatch.pbs
– make a copy of this file with a name that matches your executable, eg
– user@eslogin003$ cp mpibatch.pbs hello.pbs

 For 4 processors:
 qsub –q resnum –l select=1:mpiprocs=4 hello.pbs

– automatically runs executable called “hello”
– resnum should be replaced with the id of the reservation we are using
– output will appear in a file called hello.pbs.oXXXXX
– can follow job progress using qstat –u $USER
– script also times your program using the Unix “time” command
– full instructions included as comments in the template
– no need to alter the script - just rename it as appropriate

• eg to run a program “pingpong” make another copy called “pingpong.pbs”

Filesystems on ARCHER

ARCHER has 3 file systems:
– home – NFS, not accessible on compute nodes

• For source code and critical files

• Backed up

• > 200 TB total

– /work – Lustre, accessible on all nodes

• High-performance parallel filesystem

• Not backed-up

• > 4PB total

– RDF – GPFS, not accessible on compute nodes

• Long term data storage

Filesystems on ARCHER

Cannot run from the home file system
– back-end nodes can only see the work file system

Recommendation
– do everything in /work

– change directory to /work/y07/y07/username/

– Copy and compile code there, submit jobs from there

C++ Interface

MPI is not an OO interface
– however, can be called from C++

Function calls are different, eg:
– MPI::Intracomm comm;

– ...

– MPI::Init();

– comm = MPI::COMM_WORLD;

– rank = comm.Get_rank();

– size = comm.Get_size();

Compiler is called mpicxx
– see hello.cc and Makefile_cc

C++ interface is

now deprecated

Advised to cross-

call to C

Documentation

MPI Standard available online
– See: http://www.mpi-forum.org/docs/

Available in printed form
– http://www.hlrs.de/mpi/mpi22/

Man pages
– must use the C style of naming: man MPI_Routine_name, eg:

– user@eslogin003$ man MPI_Init

MPI Books

Exercise: Hello World

The minimal MPI program

See Exercise 1 on the exercise sheet

Write an MPI program that prints a message to

the screen

Main purpose is to get you compiling and

running parallel programs on anselm
– also illustrates the SPMD model and use of basic MPI calls

We supply some very basic template code
– see pages 4 and 5 of the notes as well

