
Xeon Phi experiences for the CloverLeaf and
TeaLeaf benchmarks

Michael Boulton

June 5, 2014

Cloverleaf and TeaLeaf
Both work on the same 2 dimensional structured grid with a reflective
boundary. Parallel versions of both have been written in
FORTRAN/C/OpenMP and OpenCL.

Cloverleaf

◮ Eulerian/Lagrangian
hydrodynamics - solves
Euler equations

◮ Explicit update

TeaLeaf

◮ Heat diffusion - solves
system of linear equations
using matrix free method

◮ Implicit update

Cloverleaf and TeaLeaf

Mesh is defined from x_min,y_min to x_max,y_max, with 2 halo cells
around the outside. A typical loop looks like:

!$OMP PARALLEL

!$OMP DO REDUCTION(+:pw)

DO k=y_min,y_max

DO j=x_min,x_max

w(j, k) = (1.0_8 &

+ ry*(Ky(j, k+1) + Ky(j, k)) &

+ rx*(Kx(j+1, k) + Kx(j, k)))*p(j, k) &

- ry*(Ky(j, k+1)*p(j, k+1) + Ky(j, k)*p(j, k-1)) &

- rx*(Kx(j+1, k)*p(j+1, k) + Kx(j, k)*p(j-1, k))

pw = pw + w(j, k)*p(j, k)

ENDDO

ENDDO

!$OMP END DO

!$OMP END PARALLEL

FORTRAN/C/OpenMP on Xeon Phi

Tests were run on an ’SE10P’ card, roughly equivalent to a ’5110P’ (61
cores @ 1.1GHz)

◮ Slight problem with FORTRAN not being fully vectorized originally,
but fixed in the latest version of compiler

◮ Running OpenMP across whole device quite slow, flat MPI quite
slow. Best balance was to use one MPI task per CPU with one
OpenMP task per core

◮ Slight speed difference between C and FORTRAN but nothing very
noticeable

Worked immediately without any other changes needed, and was 40-45%
faster than on a dual socket Ivy Bridge Xeon CPU.

OpenCL on Xeon Phi

◮ Useful information as to whether the kernels were vectorised or not
before having to profile them. Vectorised differently on CPU/Phi?

Build started

Kernel <viscosity> was successfully vectorized

Done.

◮ Had to change kernel launches to use offsets:

if(row >= (y_min + 1) && row <= (y_max + 1)

&& column >= (x_min + 1) && column <= (x_max + 1))

Managed to get a ∼30% speed up by removing checks that
depended on the x dimension

◮ Source level profiling helped find some slow bits which I didn’t think
were slow

PdV kernel

tlb

Tools/libraries

◮ Vec reporting helps a lot, especially in huge programs - vectorisation
is as good as if not better than gcc (fixed with recent SLP loop
vectorisation?). Next version of compiler has better reporting

◮ OpenMP 4.0 lets you specify loops as SIMD in a portable manner
instead of using #pragma simd

◮ Source level profiling incredibly useful, especially for OpenCL where
it can find unexpected problems

Experiences

Good things:

◮ Performance per Watt/volume/cost is better than a CPU

◮ A lot easier to get things running on it - anything that helps on the
CPU helps on the Xeon Phi and vice versa so it’s not wasted effort

◮ Once you can properly exploit parallelism in code it does have quite
good performance

Bad things:

◮ Feels immature - setting environment variables to improve speed,
driver updates might speed up code, might have to spend a bit of
time aligning loops, finding optimal MPI/OpenMP balance, etc

◮ FP performance is good for memory bandwidth isn’t so good

◮ Streaming store instructions not generated enough

Most of these seem to be fixed in newer drivers/compilers/next gen
hardware

