
Overview: Programming Environment for
Intel® Xeon Phi™ Coprocessor

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

One Source Base, Tuned to many
Targets

Multicore

Source

Many-core Cluster

Compilers,
Libraries,
Parallel Models

Multicore
CPU

Multicore
CPU

Intel® MIC
Architecture

Multicore
Cluster

Multicore and
Many-core Cluster

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Phase Product Feature Benefit

Build

Intel®
Advisor XE

Threading design assistant
(Studio products only)

• Simplifies, demystifies, and speeds
parallel application design

Intel®
Composer XE

• C/C++ and Fortran compilers
• Intel® Threading Building Blocks
• Intel® Cilk™ Plus
• Intel® Integrated Performance

Primitives
• Intel® Math Kernel Library

• Enabling solution to achieve the
application performance and
scalability benefits of multicore and
forward scale to many-core

Intel®
MPI Library†

High Performance Message
Passing (MPI) Library

• Enabling High Performance
Scalability, Interconnect
Independence, Runtime Fabric
Selection, and Application Tuning
Capability

Verify
& Tune

Intel®
VTune™

 Amplifier XE

Performance Profiler for
optimizing application
performance and scalability

• Remove guesswork, saves time,
makes it easier to find performance
and scalability bottlenecks

Intel®
Inspector XE

Memory & threading dynamic
analysis for code quality

Static Analysis for code quality

• Increased productivity, code quality,
and lowers cost, finds memory,
threading , and security defects
before they happen

Intel® Trace
Analyzer &
Collector†

MPI Performance Profiler for
understanding application
correctness & behavior

• Analyze performance of MPI
programs and visualize parallel
application behavior and
communications patterns to identify
hotspots

Intel® Parallel Studio XE 2013 and Intel® Cluster Studio XE 2013

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Native Models

4

OpenMP

MPI

TBB

OpenCL

MKL

Tools

TBB

OpenMP

MPI

C++/Ftn

Intel Cilk Plus

OpenCL

MKL

Parallel programming is the same on coprocessor and host

Tools
Host Executable Coprocessor

Executable

 P
ar

al
le

l
C
om

pu
te

 P
ar

al
le

l
C
om

pu
te

C++/Ftn

Intel Cilk Plus

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® MIC Centric
Native MIC Programming

Enabled by –mmic compiler option

• Fully supported by compiler vectorization, Intel® MKL,
OpenMP*, Intel® TBB, Intel® Cilk Plus, Intel® MPI, …

• No Intel® Integrated Performance Primitives library yet

• For sure, an option for some applications:
• Needs to fit into memory (up to 16GB today)
• Should be highly parallel code
• Serial parts are slower on MIC than on host
• Limited access to external environment like I/O
• Native MIC file system exists in memory only
• NFS allows external I/O but limited bandwidth

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Offload Models

6

OpenMP

MPI

TBB

OpenCL

MKL

Tools

TBB

OpenMP

MPI

C++/Ftn

Intel Cilk Plus

OpenCL

MKL

Parallel programming is the same on coprocessor and host

Tools

PC

Ie

Host Executable Coprocessor
Executable

Heterogeneous
Compute

 P
ar

al
le

l
C
om

pu
te

 P
ar

al
le

l
C
om

pu
te

Offload Directives (Data Marshalling)

Offload Keywords
(Shared Virtual Memory)

C++/Ftn

Intel Cilk Plus

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Range of models to meet application needs

Programming Models and Mindsets

7

Foo()
Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*() Multi-core

(Xeon)

Many-core

(MIC)

Multi-Core Centric Many-Core Centric

Multi-Core Hosted
General purpose

serial and parallel
computing

Offload
Codes with highly-

parallel phases

Many-Core Hosted
Highly-parallel codes

Symmetric
Codes with balanced

needs

Xeon MIC

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Offload Models

• Intel® Xeon Phi™ supports two offload models:
– Explicit:

Data transfers from host to/from coprocessor are initiated by
programmer

– Implicit:
Data is (virtually) shared (VSHM) between host and coprocessor

• Also called LEO (Language Extensions for Offload)

8

5/28/2014

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Explicit Offload Model

• The programmer explicitly control data and function
movement between the host and target(s)

– Data is copied (not shared)
– Must be bitwise copy-able (pointers NOT relocated)

• Supported for Fortran, C/C++

 9

5/28/2014

Host Target

Allocate
1

3
Read/Modify

Copy back
4

Copy over
2

Free
5

pA

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Explicit Offload Model - Use

Explicit offloading requires user to manage data persistence:
• Data/Functions marked as…

C/C++:
• #pragma offload_attribute(push, target(mic))

 …
#pragma offload_attribute(pop))

• _attribute__((target(mic)))

 Fortran:
• !DIR$ OPTIONS /OFFLOAD_ATTRIBUTE_TARGET=mic

• !DIR$ ATTRIBUTES OFFLOAD:mic :: <subroutine>
Will exist on both the host and target systems and copied between
host and target when referenced.

• Named targets
– target(mic): runtime picks the card
– target(mic:n): explicitly name the logical card number n

10

5/28/2014

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Explicit Offload Model - Use

Pure data transfer:
• #pragma offload_transfer target(mic0)

• !DIR$ offload_transfer target(mic0)

• Asynchronous transfers:
Clauses signal(<id>) & wait(<id>)

Offloading code:
• #pragma offload target(mic0) <code_scope>

• !DIR$ offload target(mic0) <code_scope>

11

5/28/2014

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Explicit Offload Model – Memory

• Use in/out/inout/nocopy clauses to specify data transfer
and direction

• Use alloc_if([0|1]) and free_if([0|1]) to conditionally
manage memory allocation on the target

• With into(…) clause you can specify data to be moved to
other variables/memory.

What can persist?

12

5/28/2014

Type of variable Support
Static or global Yes
Heap Yes
Scalar on stack Yes
Array on stack Not yet

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Explicit Offload Model – Example

Allocate persisted data on heap:
Create structure to track persistent data, pass it as a parameter
between functions

13

5/28/2014

struct pcache {
 int *p1;
};

#define N 128
int main(int argc, char **argv)
{
 struct pcache *share = start_job();
 continue_job(share);

 return 0;
}

Declaration of struct type
with link to dynamic data

Two separate functions
operate on same data

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Explicit Offload Model – Example
cont’d

14

5/28/2014

 struct pcache *start_job()
{
 int *A = (int *)malloc(N * sizeof(int));
 for (i=0;i < N; ++i) A[i] = i;

 struct pcache *mycache =
 (struct pcache *)malloc(sizeof(pcache));
 mycache->p1 = A;

#pragma offload target(mic:0) in(A:length(N) free_if(0))
 {
 for (i=0;i < N; ++i) {
 A[i] += A[i] + 1;
 }
 }
 return mycache;
}

Set up “cache”

Allocate & initialize
payload data

Transfer payload data
and keep on target

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Explicit Offload Model – Example
cont’d

• Only minimal changes required!
• The same code also runs on host:

– Compile with -no-offload or
– run on host without target

15

5/28/2014

void continue_job(struct pcache *mine)
{
 int i;
 int *A = mine->p1;

#pragma offload target(mic:0) \
 in(A:length(0) alloc_if(0) free_if(0))
 {
 for (i=0;i < N; ++i) {
 A[i] += A[i] + 1;
 }
 }
}

Get the pointer to existing
data from the “cache”

(Re-)Use already allocated data

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Implicit Offload Model

• Implicit Offloading: Virtual Shared Memory
• User code declares data objects to be shared:

– Data allocated at same address on host and target
– Modified data is copied at synchronization points
– Allows sharing of complex data structures
– No data marshaling necessary

• Supported only for C and C++
• Can’t propagate exceptions between host & target

16

5/28/2014

Host
Memory

Target
Memory

(V)SHM

Offload code

C/C++ executable

Host

Intel® MIC

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Implicit Offload Model - Example

17

5/28/2014

#define N 20000.0
_Cilk_shared float FindArea(float r)
{
 float x, y, area;
 unsigned int seed = __cilkrts_get_worker_number();

 cilk::reducer_opadd<int> inside(0);
 cilk_for(int i = 0; i < N; i++) {
 x = (float)rand_r(&seed)/RAND_MAX;
 y = (float)rand_r(&seed)/RAND_MAX;
 x = 2.0 * x - 1.0;
 y = 2.0 * y - 1.0;
 if (x * x + y * y < r * r) inside++;
 }

 area = 4.0 * inside.get_value() / N;
 return area;
}

Explicitly shared function:
For both host & target

Intel® Cilk™ Plus
reducer & for-loop

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Implicit Offload Model - Example
cont’d

18

5/28/2014

int main(int argc, char **argv)
{
 // Get r1 & r2 from user…

 Area1 = cilk_spawn _Cilk_offload FindArea(r1);

 Area2 = FindArea(r2);

 cilk_sync;

 float Donut = Area1 – Area2;
 float PI = 3.14159265;
 float AreaR = PI * (r2 * r2 - r1 * r1);
 float Accuracy = 100 * (1 - fabs(Donut - AreaR)/AreaR);
 printf("Area1=%lf, Area2=%lf\n", Area1, Area2);
 printf(“Donut =%lf, Accuracy = %lf\n", Donut, Accuracy);
}

Wait for host & target to complete

Offload to target (big area)

While target runs, compute other
area on host (small area)

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Implicit Offload Model

Preferred if data to be transferred is complex:
It can use pointers, and any composition of structs and
pointers!
• Allocation via _Offload_shared_[aligned_]malloc(…)
• De-allocation via _Offload_shared_[aligned_]free(…)

Target can be specified as well:
_Cilk_offload_to(<target-number>)

Same as for explicit offload model:
• Only minimal changes required!
• The same code also runs on host:

– Compile with -no-offload or
– run on host without target

 19

5/28/2014

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What is needed?

Install Intel® Manycore Platform Software Stack package:
• Provides cross-compile environment
• Also contains Eclipse* IDE/Visual Studio* integration for

debugging
• Use compilers from Intel® Composer XE 2013 and later

For offload models, pass options via -offload-option
Example:
$ icc test.c -O2 -offload-option,mic,compiler,"-O3 -vec-report3"

Native build also possible by option –mmic
More information reg. offload models:
http://software.intel.com/en-us/articles/effective-use-of-the-
intel-compilers-offload-features
 20

5/28/2014

http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP 4.0 TARGET – Offload Execution Model

The code section to be executed on accelerators are marked by a
target construct.

• A target region is executed by a single thread, called the initial
device thread

• Parallelism on accelerator is specified by traditional and extended
Openmp-parallel constructs

• The task that encounters the target construct waits at the end of
the construct until execution of the region completes

• If a target device does not exist or is not supported by the
implementation, the target region is executed by the host device

• A data environment is set up via map clause

21

#pragma omp target [clause[[,] clause],...] new-line
 structured-block

Clauses:

device(scalar-integer-expression) // to select the device
map(alloc|to|from|tofrom : list) if(scalar-expr) // data environment

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP* Data Environment Examples

22

#pragma omp target map(to:b[0:count])) map(to:c,d) map(from:a[0:count])
 {
#pragma omp parallel for
 for (i=0; i<count; i++) {
 a[i] = b[i] * c + d;
 }
 }

#pragma omp target data device(0) map(alloc:tmp[0:N]) map(to:input[0:N]) map(from:result)
 {
#pragma omp target device(0)
#pragma omp parallel for
 for (i=0; i<N; i++)
 tmp[i] = some_computation(input[i], i);

 do_some_other_stuff_on_host();

#pragma omp target device(0)
#pragma omp parallel for reduction(+:result)
 for (i=0; i<N; i++)
 result += final_computation(tmp[i], i)
 }

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Support for SIMD Parallelism
But there is more than
the parallelism offered
by the many cores:

For good performance,
it’s not sufficient to
use all the cores, you
need to use the 512
bit SIMD registers and
(vector) instructions

23

Vector Processing Unit for Intel® IMCI - 512-bit
Vector Execution Engine
• 16 lanes of 32-bit single precision and integer

operations
• 8 lanes of 64-bit double precision and integer operations
• 32 512-bit general purpose vector registers in 4 threads
• 8 16-bit mask registers in 4 threads for predicated

execution

Read/Write
• One vector length (512-bits) per cycle from/to Vector

Registers
• One operand can be from the memory

IEEE 754 Standard Compliance
• 4 rounding Model, even, 0, +∞, -∞
• Hardware support for SP/DP denormal handling

More about FP handling:
http://software.intel.com/en-us/articles/differences-in-floating-point-
arithmetic-between-intel-xeon-processors-and-the-intel-xeon

http://software.intel.com/en-us/articles/differences-in-floating-point-arithmetic-between-intel-xeon-processors-and-the-intel-xeon
http://software.intel.com/en-us/articles/differences-in-floating-point-arithmetic-between-intel-xeon-processors-and-the-intel-xeon

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® MIC Vector Types

Intel® Many Integrated Core (Intel® MIC):

Note:

It just has begun – more to come, but only what’s needed!

High level language complex type can also be used; compiler
cares about details (halves the potential vector length)

Use 32 bit integers where possible
(short & char types will be converted implicitly, though)

16x single precision
FP

16x 32 bit integer

8x double precision
FP

First
Generation

24

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Many Ways to Exploit SIMD Parallelism

Ease of use Compiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
Intel® Cilk™ Plus Data Parallel Extensions

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Auto-vectorization
• The vectorizer for Intel® MIC architecture works just like for

SSE or AVX on the host, for C, C++ and Fortran
• Enabled at default optimization level (-O2)
• Data alignment should be to 64 bytes, instead of 16 (see later)
• More loops can be vectorized, because of masked vector

instructions, gather/scatter instructions, fused multiply-add (FMA)
• Try to avoid 64 bit integers (except as addresses)

• Vectorized loops may be recognized by:
• Vectorization and optimization reports (simplest), e.g.
 -vec-report2 or -opt-report-phase hpo
• Unmasked vector instructions (there are no separate scalar

instructions; masked vector instructions are used instead)
• Gather & scatter instructions
• Math library calls to libsvml

26

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus

27

 Simple Keywords

Set of keywords, for expression
of task parallelism:

cilk_spawn
cilk_sync
cilk_for

Reducers
(Hyper-objects)

Reliable access to nonlocal variables
without races

cilk::reducer_opadd<int> sum(3);

Array Notation
Provide data parallelism for sections of

arrays or whole arrays
mask[:] = a[:] < b[:] ? -1 : 1;

Elemental Functions
Define actions that can be applied to
whole or parts of arrays or scalars

Execution parameters
Runtime system APIs, Environment variables, pragmas

Task parallelism

Data parallelism

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus Array Notation

28

Simple example:
Serial version:
float dot_product(unsigned int size, float A[size], float B[size])
{
 int i;
 float dp = 0.0f;
 for (i=0; i<size; i++) {
 dp += A[i] * B[i];
 }
 return dp;
}

Array Notation version:
float dot_product(unsigned int size, float A[size], float B[size])
{
 return __sec_reduce_add(A[:] * B[:]);
 // A[:] can also be written as A[0:size]
}

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus Array Notation
Syntax

29

• Use a “:” in array subscripts to operate on multiple elements
• Array notation returns a subset of the referenced array
• “length” specifies number of elements of subset
• “stride”: distance between elements for subset
• “length” and “stride” are optional (all & stride 1 are default)

A[:]
A[start_index : length]
A[start_index : length : stride]

A[0:N]

A[0] A[1] A[2] A[N-1]

Explicit Data Parallelism Based on C/C++ Arrays

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus

30

Simple Keywords
Set of keywords, for expression

of task parallelism:
cilk_spawn
cilk_sync
cilk_for

Reducers
(Hyper-objects)

Reliable access to nonlocal variables
without races

cilk::reducer_opadd<int> sum(3);

Array Notation
Provide data parallelism for sections of

arrays or whole arrays
mask[:] = a[:] < b[:] ? -1 : 1;

SIMD Enabled Functions
Define actions that can be applied to
whole or parts of arrays or scalars

Execution parameters
Runtime system APIs, Environment variables, pragmas

Task parallelism

Data parallelism

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus SIMD Enabled
Functions

31

User-defined Elemental Function

__declspec(vector(uniform(a)))
void saxpy(float a, float x, float &y)
{
 y += a * x;
}

saxpy(2.0, x[0:n], y[0:n]);

Compiler generates:
void saxpy_v(float a, float x[VL], float y[VL])
{
 y[:] += a * x[:];
}

Compiler generates:
parallel for(i = 0; i < n; i += VL)
{
 saxpy_v(2.0, &x[VL], &y[VL]);
}

Serial Code
void saxpy(int n, float a, float *x, float *y)
{
 for (int i = 0; i < n; ++i) y[i] += a * x[i];
}

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus SIMD Enabled
Functions - Clauses

32

__attributes__((vector)) (Intel)

#pragma omp declare simd (OpenMP* 4.0)
Available clauses (both OpenMP and Intel versions)

LINEAR (additional induction variables)
UNIFORM (arguments that are loop constants)
REDUCTION
PROCESSOR (Intel)
VECTORLENGTH (Intel)
MASK / NOMASK (Intel)
INBRANCH / NOTINBRANCH (OpenMP 4.0)
SIMDLEN (OpenMP 4.0)
ALIGNED (OpenMP 4.0)

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus

33

Simple Keywords
Set of keywords, for expression

of task parallelism:
cilk_spawn
cilk_sync
cilk_for

Reducers
(Hyper-objects)

Reliable access to nonlocal variables
without races

cilk::reducer_opadd<int> sum(3);

Array Notation
Provide data parallelism for sections of

arrays or whole arrays
mask[:] = a[:] < b[:] ? -1 : 1;

Task parallelism

Data parallelism

Elemental Functions
Define actions that can be applied to
whole or parts of arrays or scalars

Execution parameters
Runtime system APIs, Environment variables, pragmas

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus Pragma/Directive

34

C/C++: #pragma simd [clause [,clause]…]
Fortran: !DIR$ SIMD [clause [,clause]…]
Without any clause, the directive “enforces” vectorization of the loop,
ignoring all dependencies (even if they are proved!)

Example:

Without SIMD directive, vectorization likely fails since there are too
many pointer references to do a run-time check for overlapping
(compiler heuristic). The compiler won’t create multiple versions here.
Using the directive asserts the compiler that none of the pointers are
overlapping.

void addfl(float *a, float *b, float *c, float *d, float *e, int n)
{
#pragma simd
 for(int i = 0; i < n; i++)
 a[i] = a[i] + b[i] + c[i] + d[i] + e[i];
}

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus Pragma/Directive -
Clauses

35

The programmer (i.e. you!) is responsible for correctness

Just like for race conditions in OpenMP* loops

Available clauses (both OpenMP and Intel versions)

PRIVATE |
LASTPRIVATE | --- like OpenMP
REDUCTION |
COLLAPSE | (OpenMP 4.0 only; for nested loops)
LINEAR (additional induction variables)
SAFELEN (OpenMP 4.0 only)
VECTORLENGTH (Intel only)
ALIGNED (OpenMP 4.0 only)
ASSERT (Intel only; default for OpenMP 4.0)

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP* on the Coprocessor

• The basics work just like on the host CPU
• For both native and offload models
• Need to specify -openmp

• There are 4 hardware thread contexts per core
• Need at least 2 x ncore threads for good performance

– For all except the most memory-bound workloads
– Often, 3x or 4x (number of available cores) is best
– Very different from hyperthreading on the host!
– -opt-threads-per-core=n advises compiler how many

 threads to optimize for

• If you don’t saturate all available threads, be sure to
set $KMP_AFFINITY to control thread distribution

36

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP* defaults

• $OMP_NUM_THREADS defaults to
• 1 x ncore for host (or 2x if hyperthreading enabled)
• 4 x ncore for native coprocessor applications
• 4 x (ncore-1) for offload applications

– one core is reserved for offload daemons and OS

• Defaults may be changed via environment variables
or via API calls on either the host or the coprocessor

37

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Thread Affinity Interface

Allows OpenMP threads to be bound to physical or logical cores
• export environment variable KMP_AFFINITY=

– compact assign threads to consecutive h/w contexts on same
 physical core (eg to benefit from shared cache)

– scatter assign consecutive threads to different physical cores
 (eg to maximize access to memory)

– balanced blend of compact & scatter
 (currently only available for Intel® MIC Architecture)

• Helps optimize access to memory or cache
• Particularly important if all available h/w threads not used

– else some physical cores may be idle while others run multiple
threads

• See compiler documentation for (much) more detail

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example – share work between
coprocessor and host using OpenMP*

omp_set_nested(1);
#pragma omp parallel private(ip)
{
#pragma omp sections
 {
#pragma omp section
/* use pointer to copy back only part of potential array,
 to avoid overwriting host */
#pragma offload target(mic) in(xp) in(yp) in(zp) out(ppot:length(np1))
#pragma omp parallel for private(ip)
 for (i=0;i<np1;i++) {
 ppot[i] = threed_int(x0,xn,y0,yn,z0,zn,nx,ny,nz,xp[i],yp[i],zp[i]);
 }
#pragma omp section
#pragma omp parallel for private(ip)
 for (i=0;i<np2;i++) {
 pot[i+np1] =
 threed_int(x0,xn,y0,yn,z0,zn,nx,ny,nz,xp[i+np1],yp[i+np1],zp[i+np1]);
 }
 }
}

39

Top level, runs on host
Runs on coprocessor
Runs on host

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Resources

http://software.intel.com/mic-developer
• Developer’s Quick Start Guide

• Programming Overview

• User Forum at

 http://software.intel.com/en-us/forums/intel-many-integrated-core

http://software.intel.com/en-us/articles/programming-and-
compiling-for-intel-many-integrated-core-architecture

http://software.intel.com/en-us/articles/advanced-optimizations-
for-intel-mic-architecture

Intel® Composer XE 2013 for Linux* User and Reference Guides

Intel Premier Support https://premier.intel.com

40

http://software.intel.com/mic-developer
http://software.intel.com/en-us/forums/intel-many-integrated-core
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture
http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture
https://premier.intel.com/

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

42

42

	Overview: Programming Environment for �Intel® Xeon Phi™ Coprocessor��
	One Source Base, Tuned to many Targets
	Slide Number 3
	Native Models�
	Intel® MIC Centric�Native MIC Programming
	Offload Models�
	Programming Models and Mindsets
	Offload Models
	Explicit Offload Model
	Explicit Offload Model - Use
	Explicit Offload Model - Use
	Explicit Offload Model – Memory
	Explicit Offload Model – Example
	Explicit Offload Model – Example�cont’d
	Explicit Offload Model – Example�cont’d
	Implicit Offload Model
	Implicit Offload Model - Example�
	Implicit Offload Model - Example�cont’d�
	Implicit Offload Model�
	What is needed?
	OpenMP 4.0 TARGET – Offload Execution Model
	OpenMP* Data Environment Examples
	Support for SIMD Parallelism
	Intel® MIC Vector Types
	Many Ways to Exploit SIMD Parallelism
	Auto-vectorization
	Intel® Cilk™ Plus
	Intel® Cilk™ Plus Array Notation
	Intel® Cilk™ Plus Array Notation Syntax
	Intel® Cilk™ Plus
	Intel® Cilk™ Plus SIMD Enabled Functions
	Intel® Cilk™ Plus SIMD Enabled Functions - Clauses
	Intel® Cilk™ Plus
	Intel® Cilk™ Plus Pragma/Directive
	Intel® Cilk™ Plus Pragma/Directive - Clauses
	OpenMP* on the Coprocessor
	OpenMP* defaults
	Thread Affinity Interface
	Example – share work between coprocessor and host using OpenMP*
	Resources
	Slide Number 41
	Slide Number 42

