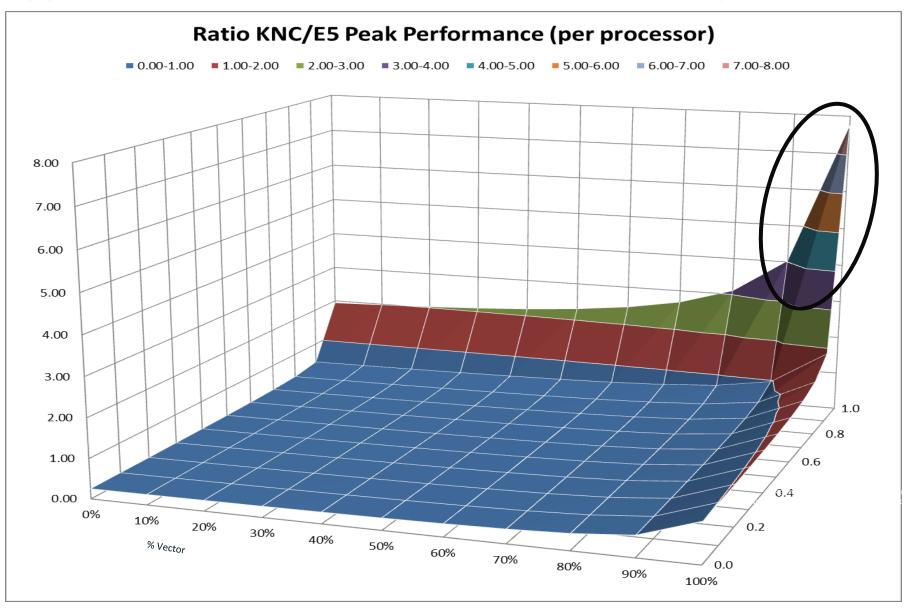


Programming for Intel® Xeon Phi™

Stephen Blair-Chappell

Optimization Notice

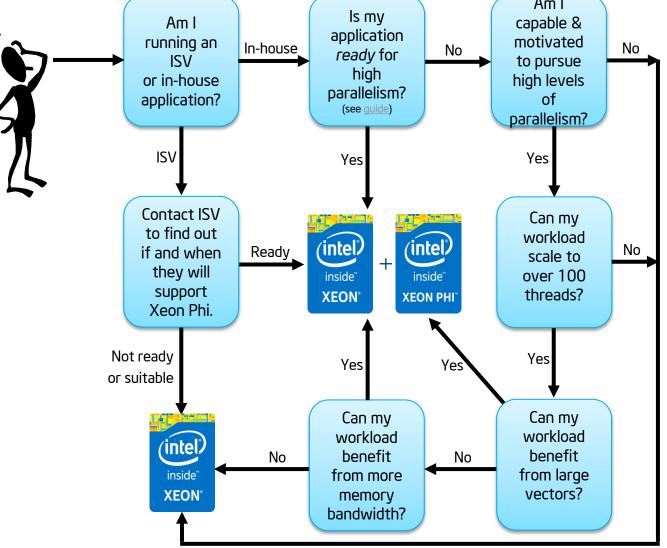

8/2/2012

Code must be

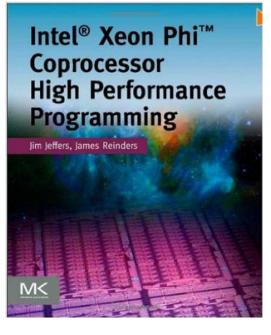
highly Parallel

effectively Vectorised

Application Performance: Intel® Xeon Phi™ Coprocessor


For more information go to http://www.intel.com/performance

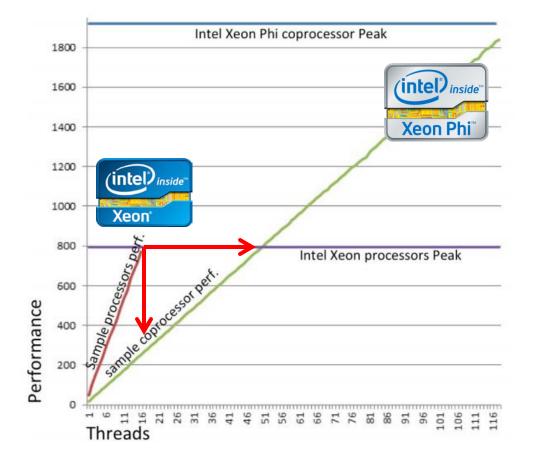
Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.


Is the Intel® Xeon Phi[™] Coprocessor right for me?

íntel

How many threads ?

"An application must scale well past one hundred threads to qualify as highly parallel"

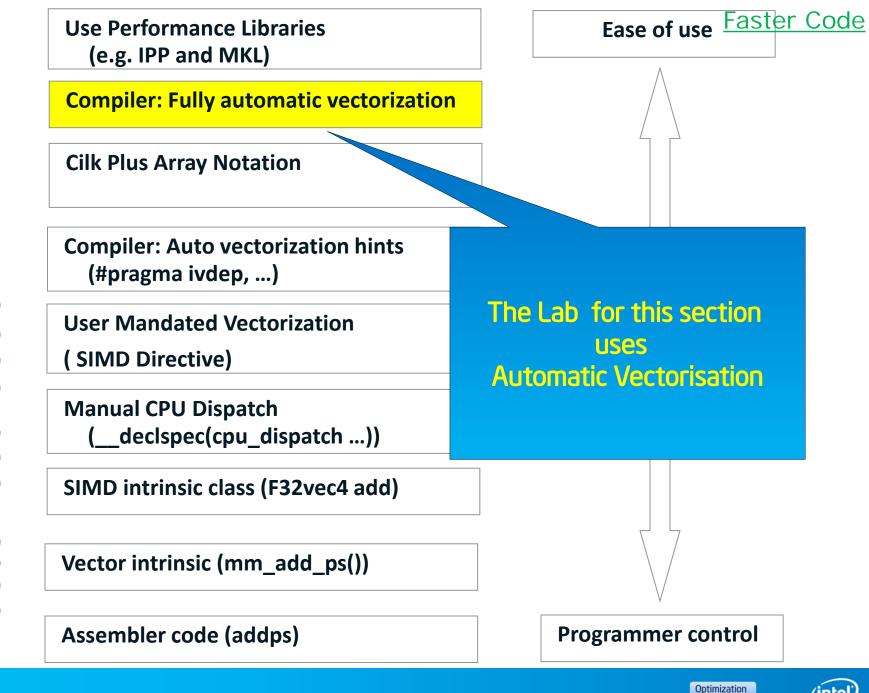


Jim Jeffers James Reinders. ISBN: 978-0124104143

Parallel Performance Potential

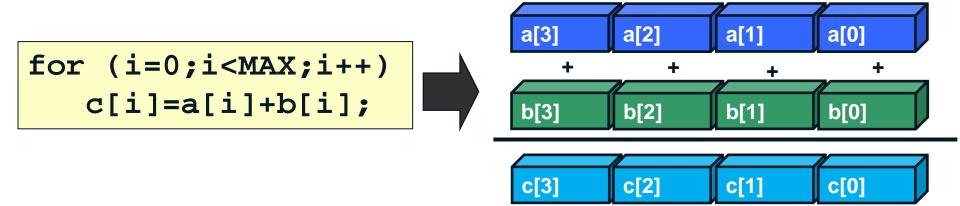
If your performance needs are met by a an Intel Xeon® processor, they will be achieved with fewer threads than on a coprocessor

On a coprocessor:


- Need more threads to achieve same performance
- Same thread count can yield less performance

Intel Xeon Phi excels on highly parallel applications

8/2/2012


Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Notice

Vectorisation is ...

Faster Code

1999	2000	2004	2006	2007	2008	2009	2011	2012\2013	2012
SSE	SSE2	SSE3	SSSE3	SSE4.1	SSE4.2	AES-NI	AVX	AVX2	MIC
70 instr Single- Precision Vectors Streaming operations	144 instr Double- precision Vectors 8/16/32 64/128-bit vector integer	13 instr Complex Data	32 instr Decode	47 instr Video Graphics building blocks Advanced vector instr	8 instr String/XML processing POP-Count CRC	7 instr Encryption and Decryption Key Generation	~100 new instr. ~300 legacy sse instr updated 256-bit vector 3 and 4- operand instructions	Int. AVX expands to 256 bit Improved bit manip. fma Vector shifts Gather	512-bit vector

Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Key Differentiators Xeon Phi vs Workstation

More Cores

Slower Clock Speed

Wider SIMD registers Faster Bandwidth

In-order pipeline

(intel)

Intel Confidential Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Theoretical Peak Flops Performance Example

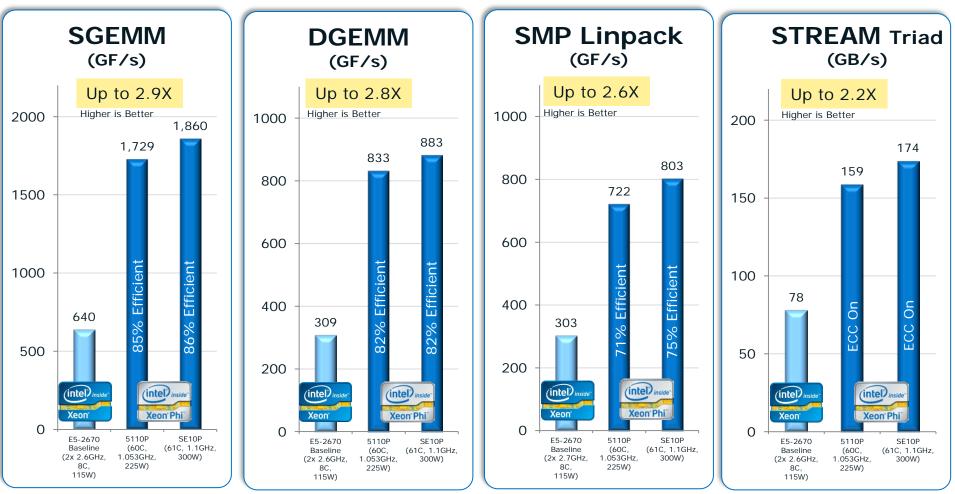
Frequency * Num Sockets * Num Cores * Vector Width * FP Ops

Two socket Intel® Xeon® E5-2670 Processor

Freq	Sockets	Num Cores		FP Ops	GFlops
2.6	2	8	4	2	666

Single card Xeon Phi Coprocessor (BO)

1.091 1 61 16 2 (using FMA) 2,128	Freq		Num Cores	Vector Width	FP Ops	GFlops
	1.091	1	61	16	2 (using FMA)	2,128


Optimization Notice

Copyright[®] 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Synthetic Benchmark Summary (Intel® MKL)

Coprocessor results: Benchmark run 100% on coprocessor, no help from Intel® Xeon® processor host (aka native)

Intel® Xeon Phi[™] Coprocessor: Increases Application Performance up to 10x

Segment	Customer	Application	Performance Increase ¹ vs. 25 Xeon*
	Acceleware	8 th order isotropic variable velocity	Up to 2.23x
Energy	Sinopec	Seismic Imaging	Up to 2.53x ²
	CNPC (China Oil & Gas)	GeoEast Pre-Stack Time Migration (Seismic)	Up to 3.54x ²
Financial Services	Financial Services	BlackScholes SP Monte Carlo SP	Up to 7.5x Up to 10.75x
Physics	Jefferson Labs	Lattice QCD	Up to 2.79x
Finite Element	Sandia Labs	miniFE (Finite Element Solver)	Up to 2x ³ Up to 1.3x ⁵
Solid State Physics	ZIB (Zuse-Institut Berlin)	Ising 3D (Solid State Physics)	Up to 3.46x
Digital Content Creation/Video	Intel Labs	Ray Tracing (incoherent rays)	Up to 1.88x ⁴
	NEC	Video Transcoding	Up to 3.0x ²
Astronomy	CSIRO/ASKAP (Australia Astronomy)	tHogbom Clean (Astronomy image smear removal)	Up to 2.27x
,	TUM (Technische Universität München)	SG++ (Astronomy Adaptive Sparse Grids/Data Mining)	Up to 1.7x
Fluid Dynamics	AWE (Atomic Weapons Establishment - UK)	Cloverleaf (2D Structured Hydrodynamics)	1.77x

Notes:

- 1. 25 Xeon* vs. 1 Xeon Phi* (preproduction HW/SW & Application running 100% on coprocessor unless otherwise noted)
- 2S Xeon* vs. 2S Xeon* + 2 Xeon Phi* (offload)
- 3. 8 node cluster, each node with 2S Xeon* (comparison is cluster performance with and without 1 Xeon Phi* per node) (Hetero)
- 4. Intel Measured Oct, 2012
- 5. 8 node cluster, each node with 2S Xeon* (comparison is cluster performance with Xeon only vs. Xeon Phi *only (1 Xeon Phi* per node) (Native) Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
 - Source: Customer Measured results as of October 22, 2012. Configuration Details: Please reference, slide speaker notes.

Updated

A Tale of Two Architectures

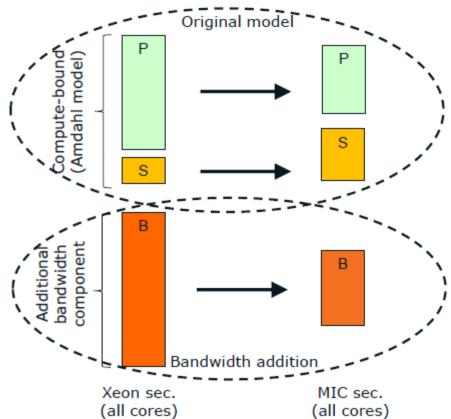
	Intel® Xeon® processor	Intel® Xeon Phi™ Coprocessor		
Sockets	2	1		
Clock Speed	2.6 GHz	1.1 GHz		
Execution Style	Out-of-order	In-order		
Cores/socket	8	Up to 61		
HW Threads/Core	2	4		
Thread switching	HyperThreading	Round Robin		
SIMD widths	8SP, 4DP	16SP, 8DP		
Peak Gflops	692SP, 346DP	2020SP, 1010DP		
Memory Bandwidth	102GB/s	320GB/s		
L1 DCache/Core	32kB	32kB		
L2 Cache/Core	256kB	512kB		
L3 Cache/Socket	30MB	none		

Your code will benefit from running on Xeon Phi if ...

It is highly scalable

Is effectively vectorised
or bandwidth
constrained

Intel Confidential Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

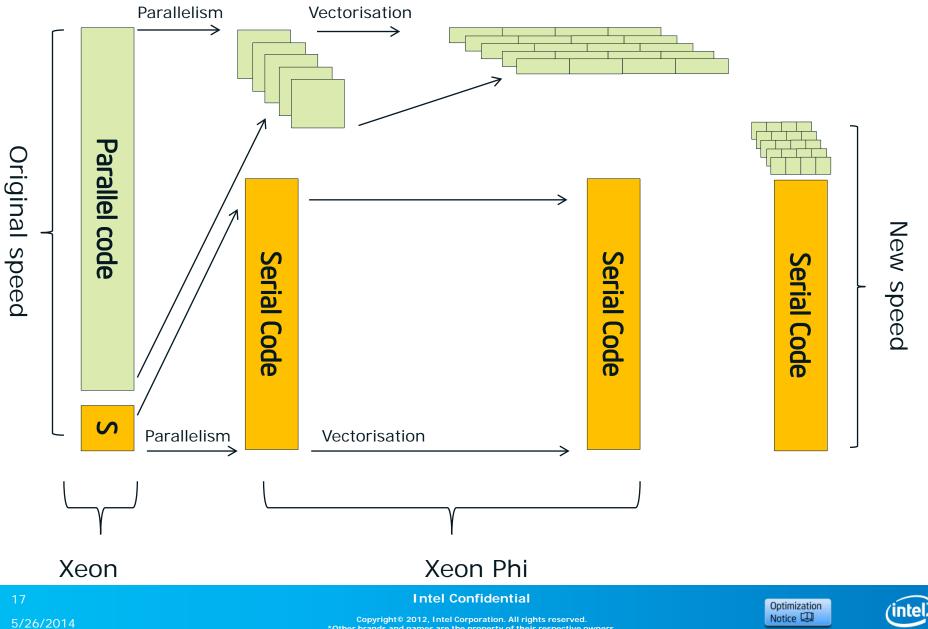

Three things to consider

Three components to consider

P – the parallel part of the program

S – the serial part of the program

B – the bandwidth constrained part of the program



Compute bound

Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

The Parallel, Vector and Clock Factors

Parallel Factor = Num Xeon Cores / Num Phi Cores 16 / 61 = 0.26229

Vector Factor =

(Xeon Vector Length * Xeon Instruction Level Parallelism) / (Phi Vector Length * Phi Instruction Level Parallelism)

> AVX-FMA** SSE-FMA** SSE-non-FMA

4 * 2 / 8 * 2 = .5AVX-non-FMA 4 * 2 / 8 * 1 = 12 * 2 / 8 * 2 = .252 * 2 / 8 * 1 = .5

Clock Factor =

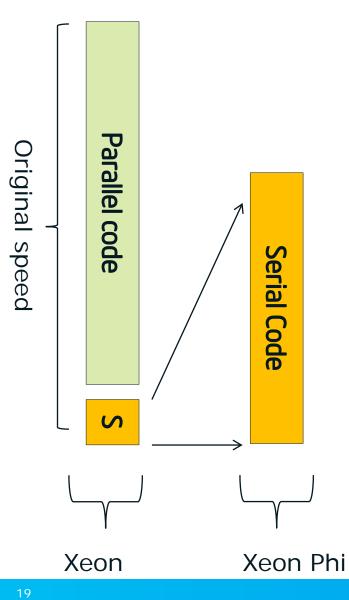
Xeon Frequency / Phi Frequency

3.1/1.09 = 2.844

Combined = Parallel Factor * Vector Factor * Clock factor

AVX-FMA * * AVX-non-FMA SSF-FMA**

0.26229 * .5 * 2.844 = 0.3730.26229 * 1 * 2.844 = 0.7460.26229 * .25 * 2.844 = 0.187 SSE-non-FMA 0.26229 * .5 * 2.844 = 0.373


NB we are comparing 2 socket SNB with single coprocessor (64 bit floating point doubles) ** FMA: source code is capable of using FMA when built for Xeon Phi

FMA** x5.38 Faster FMA** x2.68 Faster Non-FMA X2.68 Faster Non-FMA **X1.54 -**aster Optimization intel Notice

Intel Confidential

Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

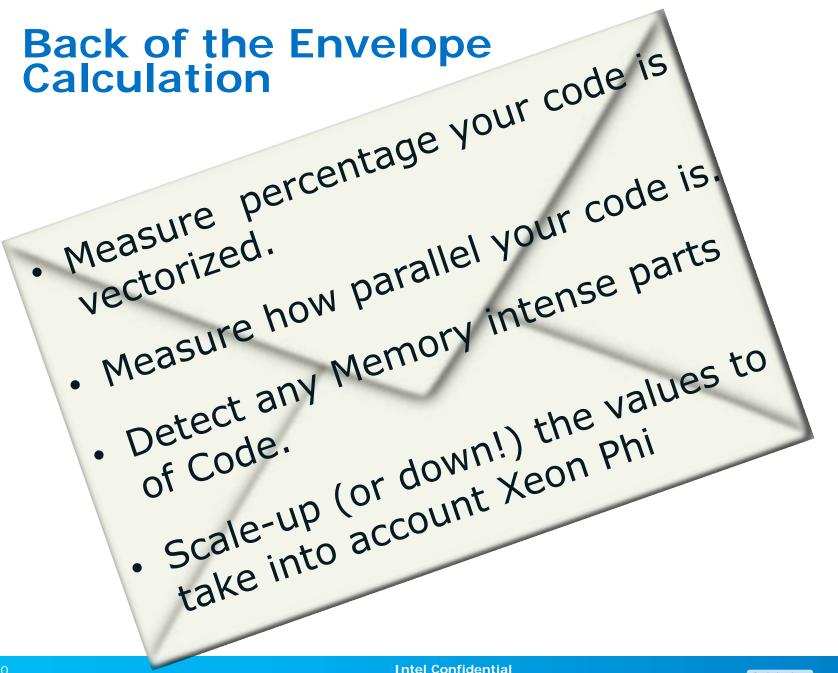
The Serial Factor

Serial Factor = Clock Factor * ILP Factor * Issue Factor Where Clock Factor = 2.6 /1.09 For FMA type calculations ILP Factor *** = 2/2 = 1 For non-FMA type calculations ILP Factor = 2/1 Issue factor = Num cycles to issue instruction on Phi /

Num cycles to issue instruction on Phi / Num cycles to issue instruction on Xeon = 2/1

Note: in single threaded code Xeon Phi uses two cycles to issue an instruction (in threaded mode it takes just one cycle)

** FMA: source code is capable of using Fused Multiple Add when built for Xeon Phi


Intel Confidential

Non-FN

x9.54

slower

Optimization

Notice

Factors (2.6 GHz Clock)

Host	SIMD	Serial	Vector	Parallel	Clock
Single socket	AVX		0.5	0.1333	2.386
2.6 GHz. FMA**	SSE2	4.772	0.25		
Single socket	AVX		1		
2.6 GHz No FMA	SSE2	9.544	0.5		
Twin socket	AVX		0.5	0.2666	
2.6 GHz FMA**	SSE2	4.772	0.25		
Twin socket	AVX	9.544	1		
2.6 GHz No FMA	SSE2		0.5		

Xeon: 8 cores per socket Phi: Using 60 of 61 cores

** FMA: source code is capable of using FMA when built for Xeon Phi NOTE: Serial Factor already includes the Clock factor

Intel Confidential

21

Copyright[®] 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Factors (3.1 GHz.)

Host	SIMD	Serial	Vector	Parallel	Clock
Single socket	AVX		0.5		
3.1 GHz. FMA**	SSE2	5.69	0.25	0.1333	2.844
Single socket	AVX		1		
3.1 GHz No FMA	SSE2	11.38	0.5		
Twin socket	AVX		0.5		
3.1 GHz FMA**	SSE2	5.69	0.25		
Twin socket	AVX		1		
3.1 GHz No FMA	SSE2	11.38	0.5		

Xeon: 8 cores per socket Phi: Using 60 of 61 cores

** FMA: source code is capable of using FMA when built for Xeon Phi NOTE: Serial Factor already includes the Clock factor

Intel Confidential

Copyright[®] 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

'Finger in the air' speedups (from 2 socket 2.6Ghz SSE2)

- An application that is highly parallel and effectively vectorised will speed up by x2.5
- An application that is highly parallel but not vectorised will speed up by x1.3
- An application that is not parallel but is vectorised will slow down by **x1.5**
- A Serial application will slow down by x12.0
- A Bandwidth constrained application will speed up by x2.4

What you experience in practice may be different from these figures. These are only 'back of the envelope' figures.

Intel Confidential

LAB 1 – Activity 1 A Quick Smoke Test

Intel Confidential

5/26/2014

LAB 1 – Activity 2 Measuring Vectorisation

Intel Confidential

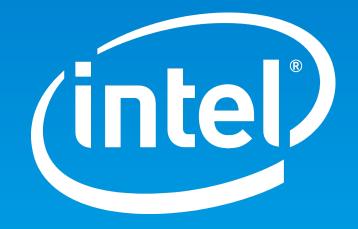
LAB 1 – Activity 3 Measuring Concurrency

Intel Confidential

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.


Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

