
Explicit Vectorisation

Stephen Blair-Chappell

Intel Compiler Labs

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallel Programming with Parallel Studio XE
Stephen Blair-Chappell & Andrew Stokes

Wiley ISBN: 9780470891650
Part I: Introduction Part II: Using Parallel Studio XE Part III :Case Studies
1: Parallelism Today 4: Producing Optimized Code 13: The World’s First Sudoku ‘Thirty-Niner’
2: An Overview of Parallel Studio XE 5: Writing Secure Code 14: Nine Tips to Parallel Heaven
3: Parallel Studio XE for the Impatient 6: Where to Parallelize 15: Parallel Track-Fitting in the CERN Collider
 7: Implementing Parallelism 16: Parallelizing Legacy Code
 8: Checking for Errors
 9: Tuning Parallelism
 10: Advisor-Driven Design
 11: Debugging Parallel Applications
 12:Event-Based Analysis with VTune Amplifier XE

2

8/2/2012

This training relies on you owning a
copy of the following…

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

O
th

er
 W

ay
s

o
f

In
se

rt
in

g

V
ec

to
ri

se
d

 C
o

d
e

3

8/2/2012

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Compiler: Auto vectorization hints
(#pragma ivdep, …)

Programmer control

Ease of use

Compiler: Fully automatic vectorization

Cilk Plus Array Notation

User Mandated Vectorization
(SIMD Directive)

Manual CPU Dispatch
(__declspec(cpu_dispatch …))

Use Performance Libraries
(e.g. IPP and MKL)

Implicit

Explicit

Instruction
aware

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD Pragma
Language Based Vectorization

This loop implies:
• “*p” is loop invariant
• a[] is not aliased with b[], c[],

and sum
• sum is not aliased with b[] and

c[]
• Generate a private copy of sum

for each iteration

• “+” operation on sum is
associative (Compiler can
reorder the “add”s on sum)

• Vector code to be generated
even if it could be slower than
scalar code

#pragma simd reduction(+:sum)
for(i=0;i<*p;i++) {
 a[i] = b[i]*c[i];
 sum = sum + a[i];
}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD Pragma: Definition

Top-level
• C/C++: #pragma simd
• Fortran: !DIR$ SIMD

Attached clauses to describe semantics
• vectorlength (VL)
• private / firstprivate / lastprivate (var1[,var2, …])
• reduction (oper1:var1[, …][, oper2:var2[, …]])
• linear (var1[:step1][, var2[:step2], …])

OpenMP*-like pragma for vector programming

A keyword base syntax also being added
• Not everyone wants to program with pragmas

5/26/2014

directive hint
vector SIMD IVDEP
thread OpenMP PARALLEL

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

6

8/2/2012

Step 4

6

Using Inter Procedural
Optimisation

-and its effect on

Vectorisation

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Interprocedural Optimisation

7

8/2/2012

Intermediate
language
(mock) objects

Executable

f2.c

f1.c IP
Compile

f2.obj

f1.obj

IP
Compile

IPO
Compile

Link f.exe

.lib

Source files

libraries
.lib .lib

Step 4

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

8

8/2/2012

What you should know about IPO
• O2 and O3 activate “almost” file-local IPO (-ip)

– Only a very few, time-consuming IP-optimizations are not
done but for most codes, -ip is not adding anything

– Switch –ip-no-inlining disables in-lining
• IPO extends compilation time and memory usage

– See compiler manual when running into limitations
• In-lining of functions is most important feature of

IPO but there is much more
– Inter-procedural constant propagation
– MOD/REF analysis (for dependence analysis)
– Routine attribute propagation
– Dead code elimination
– Induction variable recognition
– …many, many more

• IPO works for libraries too
– Not trivial topic – see documentation

Step 4

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

9

8/2/2012

Impact of IPO on Auto-Vectorisation

• IPO improves auto-vectorization results of the
sample application

• IPO brings some new ‘tricky-to-find’ auto-
vectorization opportunities.

9

Step 3

Step 4

Use Processor-Specific Options

Add Inter-procedural

Step 4

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

10

8/2/2012

Results of IPO

10

Step 4

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

11

8/2/2012

Consequence of ipo – multiple vectorisation
messages about the same line

11

chapter4.c(51): (col. 11) remark: LOOP WAS VECTORIZED.
. . .
chapter4.c(51): (col. 11) remark: loop was not vectorized:
not inner loop.
chapter4.c(51): (col. 11) remark: loop was not vectorized:
not inner loop.
chapter4.c(51): (col. 11) remark: loop was not vectorized:
existence of vector dependence.

Step 4

To see code rather than call sites use
 -debug inline-debug-info (Linux)
 /debug:inline-debug-info (Windows)

Warning: When using this option always explicitly add -O1, -O2 or –O3,
or compiler will assume –O0

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

12

8/2/2012

Modified code results in more
improvements

12

series.c
double Series2(int j)
{
 int k;
 double sumy = 0.0;
 for(k=j; k>0; k--)
 {
 // sumy++;
 sumy = AddY(sumy, k);
 }
 return sumy;
}

addy.c
double AddY(double sumy, int k)
{
// sumy--;
sumy = sumy + (double)k;
 return sumy;
}

This modification results
in a 20% boost of
performance

Step 4

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

13

8/2/2012

0

0.05

0.1

0.15

0.2

0.25

0.3
Ti

m
e

(S
ec

on
d

s)

Optimization Steps

Results so far …

Lower is better

Speedup
0.211/0.064 = 3.2

Step 5

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

14

8/2/2012

Additional Info

14

More on Auto-
vectorisation

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

O
th

er
 W

ay
s

o
f

In
se

rt
in

g

V
ec

to
ri

se
d

 C
o

d
e

15

8/2/2012

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Compiler: Auto vectorization hints
(#pragma ivdep, …)

Programmer control

Ease of use

Compiler: Fully automatic vectorization

Cilk Plus Array Notation

User Mandated Vectorization
(SIMD Directive)

Manual CPU Dispatch
(__declspec(cpu_dispatch …))

Use Performance Libraries
(e.g. IPP and MKL)

Implicit

Explicit

Instruction
aware

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk Plus Array Notation

• An extension to C language to all manipulation of
arrays

• Main advantages are
• Easier (‘allegedly’) to manipulate of arrays
• Compile will vectorize the code

– Build at -O1 or higher
– Default generates SSE2, but can be influenced by /arch, /Qx,

or Qax.

• Not yet in any standard, but Intel working hard at this

16

8/2/2012

Array[lower bound : length : stride].

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The Section Operator (:)

17

8/2/2012

int A[]4

A[:] // All of array A

Array[lower bound : length : stride].

0 2 1 3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The Section Operator (:)

18

8/2/2012

int B[13]

B[4: 7] // Elements 4 to 10

Array[lower bound : length : stride].

5 7 6 8 1 3 2 4 0 9 11 10 12

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The Section Operator (:)

19

8/2/2012

int C[3][9]

C[:][3] // Column 3

Array[lower bound : length : stride].

5 7 6 8 1 3 2 4 0

5 7 6 8 1 3 2 4 0

5 7 6 8 1 3 2 4 0

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The Section Operator (:)

20

8/2/2012

int C[5][5]

C[2:2][1:3]
// block

Array[lower bound : length : stride].

1 2 4 0 3

1 2 4 0 3

1 2 4 0 3

1 2 4 0 3

1 2 4 0 3

r1

r2

r3

r4

r5

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The Section Operator (:)

21

8/2/2012

D[0: 3: 2]

Array[lower bound : length : stride].

5 7 6 8 1 3 2 4 0 9 11 10 12

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

C/C++ Operators

• Most operators supported

• Each operation mapped onto each element of
array

22

8/2/2012

z[:] = x[:] * y[:] // element-wise multiplication

c[3: 2][3: 2] =
 a[3: 2][3: 2] + b[5: 2][5: 2] // 2x2 matrix addition

c[3][3] = a[3][3] + b[5][5];
c[3][4] = a[3][4] + b[5][6];
c[4][3] = a[4][3] + b[6][5];
c[4][4] = a[4][4] + b[6][6];

Equivalent to

Array[lower bound : length : stride].

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Gather & Scatter
When an array section occurs directly under a subscript

expression, it designates a set of elements indexed by the
values of the array section.

a[b[0:s]] = c[:] => for(i=0;i<s;i++)
 a[b[i]]=c[i];

c[0:s] = a[b[:]] => for(i=0;i<s;i++)
 c[i]=a[b[i]];

Compiler generates scatter and gather instructions on

supported hardware for irregular vector access.

2014/5/26

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Shift & Rotate
These functions shift or rotate all array elements in a
given rank-one section by a given amount.
• Shift elements in a[:] to the right (shift_val>0) or to the

left (shift_val<0) by shift_val elements. fill_value will
used to fill in the leftmost/rightmost elements.

b[:] = __sec_shift(a[:], shift_val, fill_value);

• Circular-shift all elements in a[:] to the right (shift_val>0)
or to the left (shift_val<0) by shift_val elements.

 b[:] = __sec_rotate(a[:], shift_val);

2014/5/26

24

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Shuffle
Returns a permutation of the given array section.

int a[10],b[10],c[4],d[4];

const int perm[10] = {9,8,7,6,5,4,3,2,1,0};

const int perm2[4] = {2,2,0,0};

foo() {

 a[:] = __sec_implicit_index(0)*2; // a is {0,2,4,6,8,10,12,14,16,18,20}

 b[:] = a[:][perm[:]]; // b is {20,18,16,14,12,10,8,6,4,2,0}

 c[0:4] = a[perm[6:4]]; // c is {6,4,2,0}

 b[0:4] = a[perm2[:]]; // b is {4,4,0,0}

}

2014/5/26

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reducers

• Accumulate values in array

26

8/2/2012

_sec_reduce_add — Adds values _sec_reduce_mul — Multiplies values
_sec_reduce_all_zero — Tests that all elements are zero
_sec_reduce_all_nonzero — Tests that all elements are nonzero
_sec_reduce_any_nonzero — Tests that any element is nonzero
_sec_reduce_max — Determines the maximum value
_sec_reduce_min — Determines the minimum value
_sec_reduce_max_ind — Determines index of element with max value
_sec_reduce_min_ind — Determines index of element with min value

// add all elements using a reducer
int sum = _sec_reduce_add(c[:])

// add all elements using a loop
int sum = 0;
for(int i = 0; i < sizeof(c)/sizeof(c[0]); i ++)
 sum + = c[i]);

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Function Maps
A scalar function call be mapped to the elements of
array section parameters:

a[:] = sin(b[:]);
a[:] = pow(b[:], c); // b[:]**c
a[:] = pow(c, b[:]); // c**b[:]
a[:] = foo(b[:]); // user defined function
a[:] = bar(b[:], c[:][:]); //error, different ranks

• Functions are executed in parallel.
• The compiler generates calls to vectorized library

functions.

2014/5/26

27

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Elemental Functions
User defined ‘per element’ functions

Steps:

1. Write ‘normal scalar operation’
int multwo(int i){ return i * 2;}

2. Decorate function with _declspec(vector).
int _declspec(vector) multwo(int i){ return i * 2;}

3. Call Function with Vector Arguments
int main()
{
 int A[100]; A[:] = 1;
 for (int i = 0 ; i < 100; i + +)
 multwo(A[i]);
}

28

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Why doesn’t this code build?

29

8/2/2012

#define N 2
void MatrixMul(double a[N][N], double
b[N][N], double c[N][N])
{
 int i, j;
 for (i = 0; i < N; i + +)
 {
 for (j = 0; j < N; j + +)
 {
 c[i][j] + = a[i][:] * b[:][j];
 }
 }
}

mm.c(9): error: rank mismatch in array section expression
 c[i][j] += a[i][:] * b[:][j];
 ^

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Every expression has a rank, determined as follows.
The rank of an expression with no nested sub-expression is zero. (This rule applies to identifiers and constants.)

Unless otherwise specified, the rank of an expression with one sub-expression operand is the rank of its operand. (This rule
applies to parenthesized expressions, most postfix expressions, most unary expressions, and cast expressions.)

Unless otherwise specified, in an expression with more than one sub-expression operand, the rank is the common rank of its
operands. The common rank of two expressions is

• if the rank of either expression is zero, the common rank is the rank of the other expression;

• otherwise, if the expressions have the same rank, that is the common rank;

• otherwise, the program is ill-formed.

(Determination of common rank is commutative and associative; the common rank of more than two expressions can be
determined by arbitrarily pairing expressions and intermediate results.)

The rank of a section expression (postfix-expression [section-triplet]) is one greater than the rank of its postfix expression
operand. The rank of each expression in a section triplet shall be zero.

The rank of a simple subscript expression (postfix-expression [expression]) is the sum of the ranks of its operand expressions.
The rank of the subscript operand shall not be greater than one.

The rank of an argument expression list (in a function-call expression) is the common rank of the argument expressions if there
are more than one, or the rank of the expression if there is exactly one, or zero if there are no expressions.

The rank of a non-member function-call expression is the rank of its argument expression list. The rank of the postfix expression
identifying the function to call shall be zero.

The rank of a member function call expression is determined as if the object expression appeared as an additional expression in
the argument list.

The rank of a comma expression is the rank of its second operand.

The rank of a lambda-expression is zero.

In an assignment expression, if the right operand has nonzero rank, the left operand shall have the same rank as the right
operand.

30

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Examples of Rank

Rank with no further specifications is usually a
synonym for (or refers to) "number of dimensions";

Source: http://en.wikipedia.org/wiki/Rank_of_an_array

31

8/2/2012

Expression Rank
A[3:4][0:10] 2
A[3][0:10] 1
A[3:4][0] 1
A[:][:] 2
A[3][0] 0

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

32

8/2/2012

Source: http://en.wikipedia.org/wiki/Matrix_multiplication

1 0

1 0

1 0

1 0

1 0

1 0
* 0 0 = () =

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

33

8/2/2012

1 0

1 0

1 0

1 0

1 0

1 0
* 0 0 = __sec_reduce_add() =

for (i = 0; i < N; i++)
 {
 for (j = 0; j < N; j++)
 {
 c[i][j] __sec_reduce_add = a[i][:] * b[:][j];
 }
 }

INTEL CONFIDENTIAL

34

34

Hands-on Lab

8/2/2012

Explicit Vectorisation
Cilk Plus array Notation
Elemental Functions

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

O
th

er
 W

ay
s

o
f

In
se

rt
in

g

V
ec

to
ri

se
d

 C
o

d
e

35

8/2/2012

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Compiler: Auto vectorization hints
(#pragma ivdep, …)

Programmer control

Ease of use

Compiler: Fully automatic vectorization

Cilk Plus Array Notation

User Mandated Vectorization
(SIMD Directive)

Manual CPU Dispatch
(__declspec(cpu_dispatch …))

Use Performance Libraries
(e.g. IPP and MKL)

Implicit

Explicit

Instruction
aware

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Manual processor Dispatch

Allows you to write processor-specific code

Provide more than one version of code

Use __declespec(cpu_dispatch(cpuid,cpuid…)

36

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

CPUID Arguments

37

Argument for cpuid Processors

future_cpu_16
(subject to

change)

2nd generation Intel® CoreTM processor family with support for Intel®
Advanced Vector Extensions (Intel® AVX).

core_aes_pclmulq
dq

Intel® CoreTM processors with support for Advanced Encryption Standard
(AES) instructions and carry-less multiplication instruction

core_i7_sse4_2 Intel® CoreTM processor family with support for Intel® SSE4 Efficient
Accelerated String and Text Processing instructions (SSE4.2)

atom Intel® AtomTM processors

core_2_duo_sse4
_1

Intel® 45nm Hi-k next generation Intel® CoreTM microarchitecture processors
with support for Intel® SSE4 Vectorizing Compiler and Media Accelerators
instructions (SSE4.1)

core_2_duo_ssse3 Intel® CoreTM2 Duo processors and Intel® Xeon® processors with Intel®
Supplemental Streaming SIMD Extensions 3 (SSSE3)

pentium_4_sse3 Intel® Pentium 4 processor with Intel® Streaming SIMD Extensions 3 (Intel®
SSE3), Intel® CoreTM Duo processors, Intel® CoreTM Solo processors

pentium_4 Intel® Intel Pentium 4 processors

pentium_m Intel® Pentium M processors

pentium_iii Intel® Pentium III processors

generic Other IA-32 or Intel 64 processors or compatible processors not provided by
Intel Corporation

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Manual Dispatch Example

38

#include <stdio.h>
 // need to create specific function versions
__declspec(cpu_dispatch(generic, future_cpu_16))
void dispatch_func() {};

__declspec(cpu_specific(generic))
void dispatch_func() {
 printf("Code for non-Intel processors\and generic Intel\n");
}

__declspec(cpu_specific(future_cpu_16))
void dispatch_func() {
 printf("Code for 2nd generation Intel Core processors goes here\n");
}
int main() {
 dispatch_func();
 printf("Return from dispatch_func\n");
 return 0;
}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

39

Step 6

39

Tuning Automatic
Vectorization

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

GAP – Guided Automatic
Parallelization

Key design ideas:

• It gives Advice!
• On automatic Parallelism
• On Vectorisation
• Is not a code generator
• Is not a replacement for the other

compiler reports
• Works with C/C++ and Fortran

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Workflow with Compiler as a Tool

Compiler Application

Source
C/C++/Fortran

Application
Binary
+ Opt Reports

Identify
hotspots,
problems

Performance
Tools

Simplifies programmer effort in application tuning

Application
Source +
Hotspots

Compiler
in advice-
mode

Advice
messages

Modified
Application
Source

Compiler
(extra
options)

Improved
Application
Binary

GAP

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

GAP – How it Works
Compiler Switches for GAP [1]

Activate GAP and optionally define guidance level
{L&M}: -guide[=level] {W}: /Qguide[:level]

Activate GAP individually for auto-vectorization, auto-
parallelization or data transformations
{L&M}:
 -guide-vec[=level]
 -guide-par[=level]
 -guide-data-trans[=level]
{W}:
 -guide-vec[=level]
 -guide-par[=level]
 -guide-data-trans[=level]
Optional argument level=1,2,3,4 controls extend of analysis: ‘4’ is

most advanced / most detailed and is default
You must also specify option -parallel (Linux* OS and Mac OS* X)

or /Qparallel (Windows* OS) to receive auto-parallelization
guidance

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

GAP – How it Works
Compiler Switches for GAP [2]

Control the source code part for which analysis is done
{L&M}: -guide-opts=<string> {W}: /Qguide-opts:<string>
Samples for <string>:
-“init.c, 1-50,100-150“
 Restrict analysis to file init.c, lines 1-50 and 100-150
-"bar.f90,'m1::func_solve`“
 Restrict analysis to file bar.f90, Fortran module “m1”,
function ‘func_solve’

Control where the message are going – into a new file or
append messages to existing file
{L&M}:
 -guide-file=<file_name>
 -guide-file-append=<file_name>
{W}:
 /Qguide-file:<file_name>
 /Qguide-file-append:<file_name>

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization Example [1]

void f(int n, float *x, float *y, float *z, float *d1, float *d2)

{

 for (int i = 0; i < n; i++)

 z[i] = x[i] + y[i] – (d1[i]*d2[i]);

}
GAP Message:

g.c(6): remark #30536: (LOOP) Add -Qno-alias-args option for better type-
based disambiguation analysis by the compiler, if appropriate (the
option will apply for the entire compilation). This will improve
optimizations such as vectorization for the loop at line 6. [VERIFY] Make
sure that the semantics of this option is obeyed for the entire
compilation. [ALTERNATIVE] Another way to get the same effect is to
add the "restrict" keyword to each pointer-typed formal parameter of
the routine "f". This allows optimizations such as vectorization to be
applied to the loop at line 6. [VERIFY] Make sure that semantics of the
"restrict" pointer qualifier is satisfied: in the routine, all data accessed
through the pointer must not be accessed through any other

The compiler guides the user on source-change and on what pragma to insert
and on how to determine whether that pragma is correct for this case

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization Example [2]

void mul(NetEnv* ne, Vector* rslt
Vector* den, Vector* flux1,
Vector* flux2, Vector* num
{
 float *r, *d, *n, *s1, *s2;
 int i;
 r=rslt->data; d=den->data;
 n=num->data; s1=flux1->data;
 s2=flux2->data;

 for (i = 0; i < ne->len; ++i)
 r[i] = s1[i]*s2[i] +
 n[i]*d[i];
}

GAP Messages (simplified):

1. “Use a local variable to hoist
the upper-bound of loop at
line 29 (variable:ne->len) if
the upper-bound does not
change during execution of
the loop”

2. “Use “#pragma ivdep" to
help vectorize the loop at
line 29, if these arrays in
the loop do not have cross-
iteration dependencies: r,
s1, s2, n, d”

-> Upon recompilation, the loop
will be vectorized

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Data Transformation Example
struct S3 {

 int a;
int b; // hot
double c[100];
struct S2 *s2_ptr;
int d; int e;
struct S1 *s1_ptr;
char *c_p;
int f; // hot
};

peel.c(22): remark #30756: (DTRANS) Splitting the structure 'S3' into
two parts will improve data locality and is highly recommended.
Frequently accessed fields are 'b, f'; performance may improve by
putting these fields into one structure and the remaining fields
into another structure. Alternatively, performance may also improve
by reordering the fields of the structure. Suggested field order:'b,
f, s2_ptr, s1_ptr, a, c, d, e, c_p'. [VERIFY] The suggestion is
based on the field references in current compilation …

…
for (ii = 0; ii < N; ii++){
 sp->b = ii;
 sp->f = ii + 1;
 sp++;

}
…

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compiler Options that help
Vectorisation

47

8/2/2012

Thank You

48

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

49

8/2/2012 49

	Explicit Vectorisation
	Slide Number 2
	Other Ways of Inserting Vectorised Code
	SIMD Pragma�Language Based Vectorization
	SIMD Pragma: Definition
	Slide Number 6
	Interprocedural Optimisation
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Other Ways of Inserting Vectorised Code
	Cilk Plus Array Notation
	The Section Operator (:)
	The Section Operator (:)
	The Section Operator (:)
	The Section Operator (:)
	The Section Operator (:)
	C/C++ Operators
	Gather & Scatter
	Shift & Rotate
	Shuffle
	Reducers
	Function Maps
	Elemental Functions
	Why doesn’t this code build?
	Slide Number 30
	Examples of Rank
	Slide Number 32
	Slide Number 33
	Hands-on Lab
	Other Ways of Inserting Vectorised Code
	Manual processor Dispatch
	CPUID Arguments
	Manual Dispatch Example
	Slide Number 39
	GAP – Guided Automatic Parallelization
	Workflow with Compiler as a Tool
	GAP – How it Works�Compiler Switches for GAP [1]
	GAP – How it Works�Compiler Switches for GAP [2]
	Vectorization Example [1]
	Vectorization Example [2]
	Data Transformation Example
	Compiler Options that help Vectorisation
	Thank You
	Slide Number 49
	Slide Number 50

