
Implicit Vectorisation

Stephen Blair-Chappell

Intel Compiler Labs

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallel Programming with Parallel Studio XE
Stephen Blair-Chappell & Andrew Stokes

Wiley ISBN: 9780470891650
Part I: Introduction Part II: Using Parallel Studio XE Part III :Case Studies
1: Parallelism Today 4: Producing Optimized Code 13: The World’s First Sudoku ‘Thirty-Niner’
2: An Overview of Parallel Studio XE 5: Writing Secure Code 14: Nine Tips to Parallel Heaven
3: Parallel Studio XE for the Impatient 6: Where to Parallelize 15: Parallel Track-Fitting in the CERN Collider
 7: Implementing Parallelism 16: Parallelizing Legacy Code
 8: Checking for Errors
 9: Tuning Parallelism
 10: Advisor-Driven Design
 11: Debugging Parallel Applications
 12:Event-Based Analysis with VTune Amplifier XE

2

8/2/2012

This training relies on you owning a
copy of the following…

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What’s in this section?

• (A seven-step optimization process)

• Using different compiler options to optimize your
code

• Using auto-vectorization to tune your application
to different CPUs

3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

4

8/2/2012

The Sample Application

• Initialises two matrices with a numeric sequence
• Does a Matrix Multiplication

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The main loop (without timing & printf)

5

8/2/2012

 // repeat experiment six times
 for(l=0; l<6; l++)
 {
 // initialize matrix a
 sum = Work(&total,a);

 // initialize matrix b;
 for (i = 0; i < N; i++) {
 for (j=0; j<N; j++) {
 for (k=0;k<DENOM_LOOP;k++) {
 sum += m/denominator;
 }
 b[N*i + j] = sum;
 }
 }
 // do the matrix manipulation
 MatrixMul((double (*)[N])a, (double (*)[N])b, (double (*)[N])c);
}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The Matrix Multiply

6

8/2/2012

void MatrixMul(double a[N][N], double b[N][N], double c[N][N])
{
 int i,j,k;
 for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
 for (k=0; k<N; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
 }
}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

start Step 1

Step 2

Step 3

Step 4

Step 6

Step 7

Step 5

Use General
Optimizations

Build with
optimization disabled

Use Processor-Specific
Options

Tune automatic
vectorization

Example options
Windows (Linux)
/Od (-O0)

/01,/02,/03 (-O1, -O2, -O3)

/QxSSE4.2 (-xsse4.2)
/QxHOST (-xhost)

/Qipo (-ipo)

/Qprof-gen (-prof-gen)
/Qprof-use (-prof-use)

/Qguide (-guide)

Use Intel Family of Parallel Models
/Qparallel (-parallel)

Add Inter-procedural

Implement Parallelism
or use Automatic
Parallelism

Use Profile Guided
Optimization

Th
e

S
ev

en
 O

p
ti

m
is

at
io

n
 S

te
p

s

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

start Step 1

Step 2

Step 3

Step 4

Step 6

Step 7

Step 5

Use General
Optimizations

Build with
optimization disabled

Use Processor-Specific
Options

Tune automatic
vectorization

Example options
Windows (Linux)
/Od (-O0)

/01,/02,/03 (-O1, -O2, -O3)

/QxSSE4.2 (-xsse4.2)
/QxHOST (-xhost)

/Qipo (-ipo)

/Qprof-gen (-prof-gen)
/Qprof-use (-prof-use)

/Qguide (-guide)

Use Intel Family of Parallel Models
/Qparallel (-parallel)

Add Inter-procedural

Implement Parallelism
or use Automatic
Parallelism

Use Profile Guided
Optimization

Th
e

S
ev

en
 O

p
ti

m
is

at
io

n
 S

te
p

s

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

9

8/2/2012

Intel® Compiler Architecture

Profiler

C++
Front End

Interprocedural analysis and optimizations: inlining,
constant prop, whole program detect, mod/ref, points-to

Loop optimizations: data deps, prefetch, vectorizer,
unroll/interchange/fusion/dist, auto-parallel/OpenMP

Global scalar optimizations: partial redundancy elim,
dead store elim, strength reduction, dead code elim

Code generation: vectorization, software pipelining,
global scheduling, register allocation, code generation

FORTRAN
Front End

Disambiguation:
types, array,

pointer, structure,
directives

Step 2

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

10

8/2/2012

Getting Visibility :
Compiler Optimization Report
Compiler switch:
-opt-report-phase[=phase] (Linux)
 ‚phase‘ can be:
• ipo – Interprocedural Optimization
• ilo – Intermediate Language Scalar Optimization
• hpo – High Performance Optimization
• hlo – High-level Optimization
…
• all – All optimizations (not recommended, output too

 verbose)

Control the level of detail in the report:
/Qopt-report[0|1|2|3] (Windows)
-opt-report[0|1|2|3] (Linux, MacOS X)

10

Step 2

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

11

8/2/2012

Optimization Report Example
 icc –O3 –opt-report-phase=hlo -opt-report-phase=hpo
 icl /O3 /Qopt-report-phase:hlo /Qopt-report-phase:hpo

…
LOOP INTERCHANGE in loops at line: 7 8 9
Loopnest permutation (1 2 3) --> (2 3 1)
…
Loop at line 8 blocked by 128
Loop at line 9 blocked by 128
Loop at line 10 blocked by 128
…
Loop at line 10 unrolled and jammed by 4
Loop at line 8 unrolled and jammed by 4
…
…(10)… loop was not vectorized: not inner loop.
…(8)… loop was not vectorized: not inner loop.
…(9)… PERMUTED LOOP WAS VECTORIZED
…

icc –vec-report2 (icl /Qvec-report2) for just the vectorization report

11

Step 2

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

12

8/2/2012

There are lots of Phases!

12

icl /Qopt-report-help
Intel(R) C++ Intel(R) 64 Compiler XE for applications running on Intel(R)
64, Version 12.0.3.175 Build 20110309
Copyright (C) 1985-2011 Intel Corporation. All rights reserved.
Intel(R) Compiler Optimization Report Phases
usage: -Qopt_report_phase <phase>
ipo, ipo_inl, ipo_cp, ipo_align, ipo_modref, ipo_lpt, ipo_subst,
ipo_ratt, ipo_vaddr, ipo_pdce, ipo_dp, ipo_gprel, ipo_pmerge,
ipo_dstat, ipo_fps, ipo_ppi, ipo_unref, ipo_wp, ipo_dl,
ipo_psplit, ilo, ilo_arg_prefetching, ilo_lowering,
ilo_strength_reduction, ilo_reassociation, ilo_copy_propagation,
ilo_convert_insertion, ilo_convert_removal, ilo_tail_recursion,
hlo, hlo_fusion, hlo_distribution, hlo_scalar_replacement,
hlo_unroll, hlo_prefetch, hlo_loadpair, hlo_linear_trans,
hlo_opt_pred, hlo_data_trans, hlo_string_shift_replace, hlo_ftae,
hlo_reroll, hlo_array_contraction, hlo_scalar_expansion,
hlo_gen_matmul, hlo_loop_collapsing, hpo, hpo_analysis,
hpo_openmp, hpo_threadization, hpo_vectorization, pgo, tcollect,
offload, all

Step 2

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

13

make chapter4.o CFLAGS="-O2 -opt-report -S"

Create a report

Generate
assembler file

Source Code Assembler Code

Step 2

Getting Visibility : Assembler Listing

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

14

8/2/2012

Step 3

14

Using Processor Specific
Options

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

15

8/2/2012

SIMD Instruction Enhancements

15

Step 3

70 instr
Single-
Precision
Vectors
Streaming
operations

144 instr
Double-
precision
Vectors
8/16/32
64/128-bit
vector
integer

13 instr
Complex
Data

32 instr
Decode

47 instr
Video
Graphics
building
blocks
Advanced
vector instr

SSE

1999

SSE2

2000

SSE3

2004

SSSE3

2006

SSE4.1

2007

SSE4.2

2008

8 instr
String/XML
processing
POP-Count
CRC

AES-NI

2009

7 instr
Encryption
and
Decryption
Key
Generation

AVX

2011

~100 new
instr.
 ~300
legacy sse
instr
updated
256-bit
vector
3 and 4-
operand
instructions

AVX2

2012\2013

Int. AVX
expands to
256 bit
Improved
bit manip.
fma
Vector
shifts
Gather

MIC

2012

512-bit
vector

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD Types in Processors from
Intel [1]
X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 64

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 128

MMX™
Vector size: 64bit
Data types: 8, 16 and 32 bit integers
VL: 2,4,8
For sample on the left: Xi, Yi 16 bit
integers

Intel® SSE
Vector size: 128bit
Data types:
 8,16,32,64 bit integers
 32 and 64bit floats
VL: 2,4,8,16
Sample: Xi, Yi bit 32 int / float

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD Types in Processors from
Intel [2]

Intel® AVX
Vector size: 256bit
Data types: 32 and 64 bit floats
VL: 4, 8, 16
Sample: Xi, Yi 32 bit int or float

Intel® MIC
Vector size: 512bit
Data types:
 32 and 64 bit integers
 32 and 64bit floats
 (some support for
 16 bits floats)
VL: 8,16
Sample: 32 bit float

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 127
X8

Y8

X8opY8

X7

Y7

X7opY7

X6

Y6

X6opY6

X5

Y5

X5opY5

128 255

X4

Y4

…

X3

Y3

…

X2

Y2

…

X1

Y1

X1opY1

0
X8

Y8

X7

Y7

X6

Y6

...

X5

Y5

…

255
…

…

…

…

…

…

…

…

…

X9

Y9

X16

Y16

X16opY16

…

…

…

...

…

…

…

…

…

511

X9opY9 X8opY8 …

INTEL CONFIDENTIAL

18

18

Hands-on Lab

8/2/2012

Activity 4-1(plus)
Building the Application and getting a report

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Key Intel® Advanced Vector Extensions
(Intel® AVX) Features

• Wider Vectors
– Increased from 128 to 256 bit
– Two 128-bit load ports

KEY FEATURES BENEFITS

• Up to 2x peak FLOPs (floating point
operations per second) output with
good power efficiency

• Enhanced Data Rearrangement
– Use the new 256 bit primitives to

broadcast, mask loads and
permute data

• Organize, access and pull only
necessary data more quickly and
efficiently

• Three and four Operands: Non
Destructive Syntax for both AVX
128 and AVX 256

• Fewer register copies, better
register use for both vector and
scalar code

• Flexible unaligned memory

access support

• More opportunities to fuse load and
compute operations

• Extensible new opcode (VEX)

• Code size reduction

Intel® AVX is a general purpose architecture,
expected to supplant SSE in all applications used today

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

A New 3- and 4- Operand Instruction Format

xmm10 = xmm9 + xmm1

movaps xmm10, xmm9
addpd xmm10, xmm1

 vaddpd xmm10, xmm9, xmm1

xmm10 = xmm9 + m128

movups xmm10, m128
addpd xmm10, xmm9

 vaddpd xmm10, xmm9, m128

• Intel® Advanced Vector Extensions (Intel® AVX) has a distinct
destination argument that results in fewer register copies, better
register use, more load/op macro-fusion opportunities, and smaller
code size

• New 4- operand Blends example, implicit xmm0 not longer needed

1 less copy,
3 bytes smaller code size

1 more load/op

fusion opportunity,

4+ bytes smaller

code size

movaps xmm0, xmm4
movaps xmm1, xmm2
blendvps xmm1, m128

 vblendvps xmm1, xmm2, m128, xmm4

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Microarchitecture (Sandy Bridge)
Highlights

Instruction Fetch & Decode

Scheduler (Port names as used by IACA)

Load

Memory Control

•1-per-cycle 256-bit multiply, add, and shuffle

•Load double the data
with Intel microarchitecture (Sandy Bridge) !!!

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

Load

Store Address Store Address STD

ALU ALU ALU

JMP

L1 Data Cache

48 bytes/cycle

Allocate/Rename/Retire
Zeroing Idioms

AVX/FP Shuf
AVX/FP Bool

VI ADD VI MUL
SSE MUL

DIV *

SSE ADD

AVX FP ADD

Imm Blend Imm Blend

* Not fully pipelined

AVX FP MUL
0 63 127 255

New!

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Two Key Decisions to be Made :

1. How do we introduce the vector code ?

2. How do we deal with the multiple SIMD

instruction set extensions like SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, AVX …?

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

O
th

er
 W

ay
s

o
f

In
se

rt
in

g

V
ec

to
ri

se
d

 C
o

d
e

23

8/2/2012

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Compiler: Auto vectorization hints
(#pragma ivdep, …)

Programmer control

Ease of use

Compiler: Fully automatic vectorization

Cilk Plus Array Notation

User Mandated Vectorization
(SIMD Directive)

Manual CPU Dispatch
(__declspec(cpu_dispatch …))

Use Performance Libraries
(e.g. IPP and MKL)

Implicit

Explicit

Instruction
aware

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Overview of Writing Vector Code

Array Notation
A[:] = B[:] + C[:];

SIMD Directive
#pragma simd
for (int i = 0; i < N; ++i) {
 A[i] = B[i] + C[i];
}

Elemental Function
__declspec(vector)
float ef(float a, float b) {
 return a + b;
}
A[:] = ef(B[:], C[:]);

Auto-Vectorization
for (int i = 0; i < N; ++i) {
 A[i] = B[i] + C[i];
}

24

5/26/2014

Step 3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

O
th

er
 W

ay
s

o
f

In
se

rt
in

g

V
ec

to
ri

se
d

 C
o

d
e

25

8/2/2012

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Compiler: Auto vectorization hints
(#pragma ivdep, …)

Programmer control

Ease of use

Compiler: Fully automatic vectorization

Cilk Plus Array Notation

User Mandated Vectorization
(SIMD Directive)

Manual CPU Dispatch
(__declspec(cpu_dispatch …))

Use Performance Libraries
(e.g. IPP and MKL)

Implicit

Explicit

Instruction
aware

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

26

8/2/2012

Auto-Vectorization

128-bit Registers

A[3] A[2]

B[3] B[2]

C[3] C[2]

+ +
A[1] A[0]

B[1] B[0]

C[1] C[0]

+ +

for (i=0;i<MAX;i++)
 c[i]=a[i]+b[i];

Transforming sequential code to exploit the vector
(SIMD, SSE) processing capabilities

Step 3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

27

8/2/2012

How do I know if a loop is vectorised?

• -vec-report

> icl /Qvec-report MultArray.c
MultArray.c(92): (col. 5) remark: LOOP WAS VECTORIZED.

Qvec-report1 (default)
Qvec-report2
Qvec-report3
Qvec-report4
Qvec-report5
Qvec-report6

Step 3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Diagnostic Level of Vectorization Switch
L&M: -vec-report<N> W: /Qvec-report<N>

Note:
• In case inter-procedural optimization (-ipo or /Qipo) is

activated and compilation and linking are separate
compiler invocations, the switch needs to be added to
the link step

N Diagnostic Messages
0 No diagnostic messages; same as not using switch and thus default
1 Report about vectorized loops– default if switch is used but N is

missing
2 Report about vectorized loops and non-vectorized loops
3 Same as N=2 but add add information on assumed and proven

dependencies
4 Report about non-vectorized loops
5 Same as N=4 but add detail on why vectorization failed

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

29

8/2/2012

How do I know if a loop is vectorised?
• -vec-report7

– Experimental Feature
– see http://software.intel.com/en-us/articles/vecanalysis-python-script-for-annotating-intelr-compiler-vectorization-report

– Requires two python scripts
 icc -c -vec-report7 satSub.c 2>&1 | ./vecanalysis/vecanalysis.py –list

Message Count %
scalar loop cost: 3. 115 90.6%
loop was not vectorized: 1. 106 83.5%
unmasked unaligned unit stride stores: 2. 97 76.4%
heavy-overhead vector operations: 4. 84 66.1%
unmasked unaligned unit stride loads: 2. 79 62.2%
lightweight vector operations: 2. 74 58.3%
estimated potential speedup: 0.690000. 71 55.9%
vector loop cost: 4.250000. 71

Step 3

http://software.intel.com/en-us/articles/vecanalysis-python-script-for-annotating-intelr-compiler-vectorization-report

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

30

8/2/2012

How do I know if a loop is vectorised?
328: TMP1=KGLN
329: TMP2=KST
VECRPT (col. 1) LOOP WAS VECTORIZED.
VECRPT (col. 1) estimated potential speedup: 2.860000.
VECRPT (col. 1) lightweight vector operations: 17.
VECRPT (col. 1) loop inside vectorized loop at nesting level: 1.
VECRPT (col. 1) loop was vectorized (with peel/with remainder)
VECRPT (col. 1) medium-overhead vector operations: 4.
VECRPT (col. 1) remainder loop was not vectorized: 1.
VECRPT (col. 1) scalar loop cost: 7.
VECRPT (col. 1) unmasked aligned unit stride stores: 2.
VECRPT (col. 1) unmasked unaligned unit stride loads: 3.
VECRPT (col. 1) unmasked unaligned unit stride stores: 1.
VECRPT (col. 1) vector loop cost: 2.250000.
330: DO JLAT=TMP1,KGLX
331: !DO JLAT=KGLN,KGLX
332: IADDR(JLAT)=KSTABUF(JLAT)+YDSL%NASLB1*(0-KFLDN)+YDSL%NASLB1*(1-KSLEV)
333: ENDDO
334:

 Step 3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Scalar and Packed Instructions

31

8/2/2012

addss Scalar Single-FP Add

 single precision FP data

 scalar execution mode

addps Packed Single-FP Add

 single precision FP data

 packed execution mode

x4 x3 x2 x1

y4 y3 y2 y1

x4 x3 x2 x1 + y1

x4 x3 x2 x1

y4 y3 y2 y1

x4 + y 4 x3 + y3 x2 + y2 x1 + y1

Step 3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

32

8/2/2012

static double A[1000], B[1000],
 C[1000];
void add() {
 int i;
 for (i=0; i<1000; i++)
 if (A[i]>0)
 A[i] += B[i];
 else
 A[i] += C[i];
}

Examples of Code Generation
.B1.2::
 movaps xmm2, A[rdx*8]
 xorps xmm0, xmm0
 cmpltpd xmm0, xmm2
 movaps xmm1, B[rdx*8]
 andps xmm1, xmm0
 andnps xmm0, C[rdx*8]
 orps xmm1, xmm0
 addpd xmm2, xmm1
 movaps A[rdx*8], xmm2
 add rdx, 2
 cmp rdx, 1000
 jl .B1.2

.B1.2::
 movaps xmm2, A[rdx*8]
 xorps xmm0, xmm0
 cmpltpd xmm0, xmm2
 movaps xmm1, C[rdx*8]
 blendvpd xmm1, B[rdx*8], xmm0
 addpd xmm2, xmm1
 movaps A[rdx*8], xmm2
 add rdx, 2
 cmp rdx, 1000
 jl .B1.2

.B1.2::
 vmovaps ymm3, A[rdx*8]
 vmovaps ymm1, C[rdx*8]
 vcmpgtpd ymm2, ymm3, ymm0
 vblendvpd ymm4, ymm1,B[rdx*8], ymm2
 vaddpd ymm5, ymm3, ymm4
 vmovaps A[rdx*8], ymm5
 add rdx, 4
 cmp rdx, 1000
 jl .B1.2 AVX SSE4.1

SSE2

Step 3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Out-of-the-box behaviour – Intel
Compiler

Automatic-vectorisation is enabled by default

(turn it off with –no-vec or /Qvec-)

The option –msse2 or /arch:sse2 is used by default
(as long as no x, ax or –m option has been used)

 -msse2: “May generate Intel® SSE2 and SSE
instructions … This value is only available on Linux
systems”.

33

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

34

8/2/2012

Building for non-intel CPUs /arch: (-m)

34

This option tells the compiler to generate code specialized for the
processor that executes your program.
Code generated with these options should execute on any compatible,
non-Intel processor with support for the corresponding instruction set.

Step 3

Option Description
mic MIC (linux only at moment)

avx AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2, and SSE.

sse4.2 SSE4.2 SSE4.1, SSSE3, SSE3, SSE2, and SSE.

sse4.1 SSE4.1, SSSE3, SSE3, SSE2, and SSE instructions.

ssse3 SSSE3, SSE3, SSE2, and SSE instructions.

sse2 May generate Intel® SSE2 and SSE instructions.

sse This option has been deprecated; it is now the same as
specifying ia32.

ia32

Generates x86/x87 generic code that is compatible with
IA-32 architecture.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

35

8/2/2012

Building for Intel processors /Qx (-x)

35

Step 3

Option Description
CORE-AVX2 AVX2, AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2, and SSE instructions .

CORE-AVX-I RDND instr, AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2, and SSE
instructions .

AVX AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2, and SSE instructions .

SSE4.2

SSE4 Efficient Accelerated String and Text Processing instructions
supported by Intel® Core™ i7 processors. SSE4 .1, SSSE3, SSE3, SSE2,
and SSE. May optimize for the Intel® Core™ processor family.

SSE4.1 SSE4 Vectorizing Compiler and Media Accelerator, SSSE3, SSE3, SSE2, and
SSE . May optimize for Intel® 45nm Hi-k next generation Intel® Core™
microarchitecture.

SSSE3_ATOM
(sse3_ATOM
depracted)

MOVBE , (depending on -minstruction), SSSE3, SSE3, SSE2, and SSE .
Optimizes for the Intel® Atom™ processor and Intel® Centrino® Atom™
Processor Technology

SSSE3

SSSE3, SSE3, SSE2, and SSE. Optimizes for the Intel® Core™
microarchitecture.

SSE3 SSE3, SSE2, and SSE. Optimizes for the enhanced Pentium® M processor
microarchitecture and Intel NetBurst® microarchitecture.

SSE2 SSE2 and SSE . Optimizes for the Intel NetBurst® microarchitecture.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

36

8/2/2012

 Results of Enhancing Auto-Vectorisation

36

Step 3

INTEL CONFIDENTIAL

37

37

Hands-on Lab

8/2/2012

Activity 4-2
Proving that the code has been vectorised

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

38

8/2/2012

Vectorization Report

– “Existence of vector
dependence”

– “Non-unit stride used”

– “Mixed Data Types”

– “Condition too Complex”

– “Condition may protect
exception”

– “Low trip count”

– “Subscript too complex”

– ‘Unsupported Loop
Structure”

– “Contains unvectorizable
statement at line XX”

– “Not Inner Loop”

– "vectorization possible but
seems inefficient"

– “Operator unsuited for
vectorization”

“Loop was not vectorized” because:

Step 3

e.g. function
calls

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Ways you can help the auto-
vectoriser

• Change data layout – avoid non-unit strides

• Use #pragma ivdep

• Use the restrict key word (C \C++)

• Use #pragma vector always

• Use #pragma simd

• Use elemental functions

• Use array notation

39

8/2/2012

Step 3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Consistency of SIMD results

Two issues can effect reproducibility

- Alignment

- Parallelism

Reason: The order the calculations are done can
 change

40

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Alignment of Data
SSE2 : works better with 16 byte alignment.

Why? : the XMM registers are 16 bytes (ie 128 bits)

Penalites:
 Unaligned access vs aligned access (but still in same cache
 line) 40% worse.

 Unaligned access vs aligned access (but split over cache line)
 500% worse.

Rule of Thumb: Try to align to the SIMD register size
 MMX: 8 Bytes;
 SSE2: 16 bytes,
 AVX: 32 bytes

ALSO: Try to align blocks of data to cacheline size – ie 64 bytes

Source: http://software.intel.com/en-us/articles/reducing-the-impact-of-misaligned-memory-accesses/

41

8/2/2012

http://software.intel.com/en-us/articles/reducing-the-impact-of-misaligned-memory-accesses/

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

42

Compiler Intrinsics for Alignment

__declspec(align(base, [offset]))
Instructs the compiler to create the variable so that it is aligned
on an “base”-byte boundary, with an “offset” (Default=0) in bytes
from that boundary

void* _mm_malloc (int size, int n)
Instructs the compiler to create a pointer to memory such that
the pointer is aligned on an n-byte boundary

#pragma vector aligned | unaligned
Use aligned or unaligned loads and stores for vector accesses.

__assume_aligned(a,n)
Instructs the compiler to assume that array a is aligned on an n-
byte boundary

or other countries.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

“I’ve stopped using the Intel
compiler. Each time I ship the
product to a customer, they
complain that applications

crashes”!”

 A games developer at a recent networking event.

43

http://www.brainyquote.com/quotes/quotes/k/kevinmitni234027.html

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Imagine this scenario:

1. Your IT dept have just bought you the latest and
greatest Intel based workstation.

2. You’ve heard auto-vectorisation can make a real
difference to performance

3. You enable auto-vectorisation using -xhost

4. You boast to your colleagues, “my application runs faster than
anything you can write…”

5. You send the application to a colleague – it refuses to
run.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What might be the issue? How can it be overcome?

45

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Running a Mismatched Application

46

8/2/2012

Step 3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Multipath Auto-vectorisation

47

8/2/2012

IA32 AVX SSE4.2

CPUID

Default path
set by options
/arch or /Qx
(Linux: -m or –x)

Specialized
Path. Set by
/Qax option
(Linux: –ax)

SSE3

Additional paths can be
added by extending the
/Qax option e.g. :
/QaxSSE4.2,AVX,SSE3
(Linux: -axSSE4.2,AVX.SSE3) non-intel intel

Step 3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The vectorised code uses Packed
Instructions

48

Step 3

INTEL CONFIDENTIAL

49

49

Hands-on Lab

8/2/2012

Activity 4-3
Using more Advanced Vectorisation

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compiler Options that help
Vectorisation

50

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

51

Review Sheet for Efficient Vectorization
• Are you using vector-friendly options such as –ansi-alias and –align array64byte?

• Are all hot loops vectorized and maximizing use of unit-stride accesses?

• Align the data and Tell the compiler

• Have you studied the vec-report6 output for hot-loops to ensure these?

• Are there any peel-loop and remainder-loop generated for your key-loops (Have
you added loop_count pragma)?

• Make changes to ensure significant runtime is not being spent in such loops

• Are you able to pad your arrays and get improved performance with –opt-
assume-safe-padding?

• Have you added “#pragma vector aligned nontemporal” for all loops with
streaming-store accesses to maximize performance?

• Avoid branchy code inside loops to improve vector-efficiency
• Avoid duplicates between then and else, use builtin_expect to provide hint, move loop-

invariant loads and stores under the branch to outside loops

• Use hardware supported operations only (rest will be emulated)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

52

 Review Sheet for Vectorization 2
• Use Intel Cilk Plus extensions for efficient and predictable vectorization

• #pragma SIMD and !DEC$ SIMD
• Counterpart of OMP for vectorization

• Short-vector array notation for C/C++
• Shifts burden to the user to express explicit vectorization
• High-level and portable alternative to using intrinsics

• Use elemental functions (C and Fortran) for loops with function calls
• Can also be used to express outer-loop vectorization

• Study opportunities for outer-loop vectorization based on code access
patterns

• Use array-notations OR elemental-functions to express it

• Make memory accesses unit-strided in vector-loops as much as possible
• Important for C and Fortran

• F90 array notation also can be used in short-vector form

Thank You

53

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

54

8/2/2012 54

	Implicit Vectorisation
	Slide Number 2
	What’s in this section?
	Slide Number 4
	The main loop (without timing & printf)
	The Matrix Multiply
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	SIMD Types in Processors from Intel [1]
	SIMD Types in Processors from Intel [2]
	Hands-on Lab
	Key Intel® Advanced Vector Extensions�(Intel® AVX) Features
	Slide Number 20
	Intel® Microarchitecture (Sandy Bridge)�Highlights
	Two Key Decisions to be Made :
	Other Ways of Inserting Vectorised Code
	Overview of Writing Vector Code
	Other Ways of Inserting Vectorised Code
	Slide Number 26
	Slide Number 27
	Diagnostic Level of Vectorization Switch�L&M: -vec-report<N> W: /Qvec-report<N>
	Slide Number 29
	Slide Number 30
	Scalar and Packed Instructions
	Slide Number 32
	Out-of-the-box behaviour – Intel Compiler
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Hands-on Lab
	Slide Number 38
	Ways you can help the auto-vectoriser
	Consistency of SIMD results
	Alignment of Data
	Compiler Intrinsics for Alignment
	Slide Number 43
	Imagine this scenario:
	What might be the issue?��How can it be overcome?�
	Running a Mismatched Application
	Multipath Auto-vectorisation
	The vectorised code uses Packed Instructions
	Hands-on Lab
	Compiler Options that help Vectorisation
	Review Sheet for Efficient Vectorization
	 Review Sheet for Vectorization 2
	Thank You
	Slide Number 54
	Slide Number 55

