
Lab 0 - Getting Started

Objectives
At the end of this lab you should be able to login to the MIC server from a laptop, and query the
status of the MIC cards on the Host system.

Terminology
In this lab, we use the terms:

• Client or Laptop: The laptop, used to connect to the Host server
• Host or Server: system hosting the Intel® Xeon Phi™ coprocessor card(s)
• Target or MIC Card: Intel® Xeon Phi™ coprocessor card(s)

Activity 1: Getting Connected
1. Write down you client user ID and password here – this is the one you use to logon to your
laptop (or client terminal).

ID

Password

 Table 1- Client login details

2. If you are connecting via wifi, record the details here:

SSID

Key

 Table 2- Wifi login details

3. There will be teams working on the same coprocessor. You’ll get assigned the coprocessor name
to use (e.g. mic0, mic1, etc) and user name for both host & coprocessor (e.g. user1).

• Record your details below.
• Also record if any other users are sharing the same MIC card as you.

1

User Name

Password

Host IP address

SSH port number

MIC assigned to me

Am I sharing this MIC with
anyone (if, so list the users)

Table 3 server login details

Important Note: The Lab material will use mic0 as default coprocessor name. You’ll may be
assigned a different MIC number, please make sure you use your mic number in the labs!

.

 Figure 1 – A typical lab setup

4. Now log onto you client computer, and then SSH to the server computer. Once you are
connected to the server computer, try to ssh to your MIC card (remember to use the MIC
number you recorded in Table 3. Do this in the following order (example in figure 1)

• Logon to laptop (client)

• If needed, Connect wifi

• Ssh to the server

ssh user1@192.168.0.100
user1@192.168.0.100's password:

2

Last login: Sun May 25 20:02:55 2014 from 192.168.0.3
[user1@knc ~]$ login as: user1
Password:

• Check the path of your home directory

[user1@knc ~]$ pwd
/home/user1

• Create an empty file in your home director – give the file a unique name (so for example,
you name)

[user1@knc ~]$ echo "" > JoeBloggs
[user1@knc ~]$ ls
JoeBloggs

• Now ssh to the mic card, and look at the contents of the home directory

[user1@knc ~]$ ssh mic0
user1@knc-mic0:~$ pwd
/home/user1
user1@knc-mic0:~$ ls
JoeBloggs

If you can see the file Joe Bloggs,, then that confirms that home directory on the
server is the same as on the mic card

• Now log of the mic card by typing ‘exit’

Read this if your $HOME directory on MIC and HOST
is not the same . . .

If your $HOME directory is not shared between host and target, then first look to see if you
can find any other folder that is shared (for example /micfs or /tmp).

If there are no shared folders, then you will have to use scp to copy any files across:

e.g.

scp ~/JoeBloggs mic0:

3

user1@knc-mic0:~$ exit
logout
Connection to mic0 closed.

Activity 2: Checking the Status of the MIC card
What’s our status?
Before we start working with the coprocessor we query the status to see whether it’s up and
running.

• Use the micctrl tool to check the status by issuing the following command (notice there are
TWO hyphens before the option ‘status’:

[user1@knc ~]$ micctrl –status
mic0: online (mode: linux image: /usr/.../bzImage-
knightscorner)

If the coprocessor is running and its image has been booted you’ll see mic0: online.

• If a different status is reported (e.g. mic0: ready), check to see if the mpss service is
running:

$ service mpss status
mpss is stopped

If the mpss service is not running, please consult one of the trainers.

Finding out more details using micinfo
• Use the utility micinfo to find out more about the host system and the MIC cards that it

contains.

[user1@knc ~]$ micinfo
MicInfo Utility Log
Copyright 2011-2013 Intel Corporation All Rights Reserved.
Created Mon May 26 15:43:23 2014

• Record some of the details in the table below

Host OS

OS Version

MPSS version

Number of MIC cards in
server

Number of Active Cores

4

GDDR Size

GDDR Speed

Table 4- Some details about the host and target

Using micsmc – the Platform Status Panel
• if you enabled X11 forwarding when you first connected to to the server (the –X option used

with ssh) then look at Intel® Xeon Phi™ Coprocessor Platform Status Panel

[user1@knc ~]$ micsmc &

Initially, there’s only the summary pane visible. A separate pane with more details can be
added for each coprocessor.

 Figure 2 –The Platform Status Panel.

• Use the menu Cards and select the coprocessor that has been assigned to you for the lab
exercises. If you have exclusive use of the host system, then we recommend to leave it open
while you work with the coprocessor and switch to the Core Histogram View as shown in the
screenshot above.

• Explore all the options in the Advanced button, and then answer the following questions.

Is it possible to reset the card from this utility?
Can you find the details you recorded in Table 4 using micsmc?

Activity 3: Create and run a Coprocessor Application
Now, you’ll create an application for the coprocessor. More precisely, the first example will use the
offload extensions. You’ll learn more about it later. Please, build the application and execute it:

$ icc hello_offload.c –o hello_offload
$./hello_offload

Hello, World from host! # threads = 48
Number of Xeon Phi cards = 2
Hello, World from Phi 0 # threads = 240
Hello, World from Phi 1 # threads = 240

5

The first two lines are printed from the host, the remainder of the lines are from the coprocessor

Now set the environment variable OFFLOAD_DEVICES and re-run hello_offload. What do
you notice?

 export OFFLOAD_DEVICES=0

Building an application

• To make the Parallel Studio XE tools available from a shell, source the following
scripts (or add the commands to your ./bash_profile):

• Now let’s create a pure coprocessor (native) application:

$ icc -mmic hello.c -o hello_mic

The option -mmic to instructs the compiler to create a native Intel® MIC application. This
application can’t be executed on the host system because of the different architecture.

$ ssh mic0
 cd <to the path where you built your application>
 ./hello_mic
 Hello World!

Congratulations, you’ve now executed your first two applications for the coprocessor!

Activity 4: Hello World – Different Flavours
In the Lab0 directory, you will find hello world written using different parallel languages\constructs.

• Briefly look at the contents of each source file, then build and run each example.
• Build and run each application using the instructions below

1. Host OpenMP
Build: icc hello_openmp.c –openmp -o hello_openmp_host

Run: ./hello_openmp_host

2. MIC OpenMP
Build: icc hello_openmp.c –openmp -mmic -o hello_openmp_mic

Run: ./hello_openmp_mic

source /opt/intel/composerxe/bin/compilervars.sh intel64
source /opt/intel/vtune_amplifier_xe/amplxe-vars.sh
source /opt/intel/impi/4.1.3/bin64/mpivars.sh

6

3. MPI Host
Build: mpiicc hello_mpi.c -o hello_mpi

Run: mpirun -np 2 ./hello_mpi

4. MPI MIC – run from MIC
Build: mpiicc hello_mpi.c -mmic -o hello_mpi.mic

Run (from Phi):
 ssh mic0
 source /opt/intel/impi/4.1.3/mic/bin/mpivars.sh
 mpirun -np 2 ./hello_mpi.mic

5. MPI MIC – run from HOST
Build: (use same binary as previous)

Run: export I_MPI_MIC=enable

 mpirun -host mic0 -np 2 ./hello_mpi.mic

(or see **):

 mpirun -hostfile machines_mic -np 2 ./hello_mpi.mic

6. MPI on MIC and HOST
Build: (use same binaries as previous two examples)

Run: export I_MPI_MIC=enable
 export I_MPI_FABRICS=shm:tcp

 mpirun -host mic0 -np 1 ./hello_mpi.mic : -host
 localhost –np 1 ./hello_mpi

(or see **):

 export I_MPI_MIC_POSTFIX=.mic

 mpirun -hostfile machines_all -np 2 –ppn 1 ./hello_mpi

** Sample Hostfile(s)
machines_mic
mic0
mic1

machines_all
NOTE replace next line!
use the hostname command to find out the proper name

localhost
mic0

7

	Objectives
	Terminology
	Activity 1: Getting Connected
	Activity 2: Checking the Status of the MIC card What’s our status?
	Finding out more details using micinfo
	Using micsmc – the Platform Status Panel
	Activity 3: Create and run a Coprocessor Application
	Building an application
	Activity 4: Hello World – Different Flavours
	1. Host OpenMP
	2. MIC OpenMP
	3. MPI Host
	4. MPI MIC – run from MIC
	5. MPI MIC – run from HOST
	6. MPI on MIC and HOST
	** Sample Hostfile(s)

