
Implicit (automatic) Vectorisation
In this you will learn how to

• Enable and disable implicit (automatic) vectorisation.
• Prove that code has been vectorised by

o Using the compiler vectorisation report
o Using the compiler’s assembler listing

• Generate vectorised code that is architecture agnostic

ACTIVITY 4-1: BUILDING THE EXAMPLE APPLICATION

In this activity you build a matrix multiplication application. At the heart of the application is a triple nested
loop that does a matrix multiply using arrays of doubles (Tip: this information is important!).

Setting Up the Build Environment
1. Navigate to the folder Chapter4\4-5

2. If you are using Linux, you will need to comment -out the Windows-specific variables at the beginning of
the Makefile and uncomment the Linux variables.

3. Open an Intel Parallel Studio XE command prompt.

• Windows
 Start | All Programs | Intel Parallel Studio 2013 | Command Prompt
 | Parallel Studio XE with Intel Compiler | Intel 64 Visual Studio

• Linux

To make the Parallel Studio XE tools available from a shell, source the following
scripts (or add the commands to your ./bash_profile):

source /opt/intel/composerxe/bin/compilervars.sh intel64
source /opt/intel/vtune_amplifier_xe/amplxe-vars.sh
source /opt/intel/inspector_xe/inspxe-vars.sh

Building and Running the Program
4. Build the application intel.O2.exe using the Intel compiler:

 Linux

make clean
make CFLAGS="-O2" TARGET=intel.O2

(Note : the CFLAGS a capital ‘O’ followed by a number)

 Windows

nmake clean
nmake CFLAGS="/O2" TARGET=intel.O2

5. Run the program intel.O2.exe and record the results in the table overleaf. Use the

lowest time as the benchmark figure.

Note that if your CPU supports Turbo Boost Technology Mode, you may want to disable it
in the BIOS. See your PC’s handbook for instructions.

6. Repeat step 4, adding the CFLAG option /Qvec- (Windows) or -vec- (Linux) to
disable the auto-vectorization (notice the minus sign at the end of the option).

 Linux

make clean
make CFLAGS="-O2 -vec-" TARGET=novec
.\novec.exe

 Windows

nmake clean
nmake CFLAGS="/O2 /Qvec-" TARGET=novec

Run the new executable novec.exe, and record the results in the table below.

The two executables from steps 1 and 2 should run at different speeds.

TARGET Shortest time taken

O2

novec

Calculate the speedup of the vectorised version, using the formula Speedup = New Speed / Old Speed.

Speedup = ___________ / ___________ = _________________

Is this the result you were expecting? (Hint, default vectorisation uses SSE2).

What reasons might there be for the speedup being different from what you expected?

ACTIVITY 4-2: USING THE COMPILER TO PROVE THAT THE CODE HAS BEEN
VECTORISED

1. Investigate how vectorization differed i n p r e v i o u s t w o b u i l d s by generating a vectorization
report for both builds. To do this, add the option /Qvec-report2 (Linux: -vec-report2) to the
CFLAGS.

e.g.

nmake clean
nmake CFLAGS="/O2 /Qvec- /Qvec-report2" TARGET=novec

 nmake clean
 nmake CFLAGS="/O2 /Qvec-report2" TARGET=intel.O2

 Looking at intel.O2.exe, how many lines where successfully vectorised?

Make a list of the different reasons why loops were not vectorised in the table below:

Reasons why loop was not vectorised

Location

2. Repeat the previous step in this activity, but generate a much more v e r b o s e r e p o r t s b y u s i n g t h e
option /Qvec-report6 (Linux: -vec-report6) in the CFLAGS.

e.g.
nmake clean
nmake CFLAGS="/O2 /Qvec-report6" TARGET=intel.O2

What new information is supplied in this report?

3. And yet miles more visibility …

 NOTE this step uses an experimental feature of the compiler.

• Read the document VecAnalysis Python_ Script.pdf - which is in the
~/CLASSFILES/resources directory.

• Extract the python scripts ~/CLASSFILES/resource/vecanalysis.tgz.

 $ tar xvzf ~/CLASSFILES/resource/vecanalysis.tgz

• Rebuild the application using -vec-report7.
• Following the instructions in VecAnalysis Python_ Script.pdf to create an

annotated listing.

Which report level do you now consider to be the most useful?

4. Examining the Disassembler
Rebuild the application with the -S option - this will generate an assembler listing.

 Linux

make clean
make CFLAGS="-O2 -S" TARGET=intel.O2

 Windows

nmake clean
nmake CFLAGS="/O2 -S" TARGET=intel.O2

NOTE: You will get linker errors, but the assembler files will have been created.

 First thing you’ll notice is that the compiler generated an assembler file for each source file.

Look at the generated files. Can you see any evidence that the code has been vectorised?

(HINT: look for packed instructions in chapter4.asm/chapter4.s. Use the line number you
recorded earlier to identify the correct place in the assembler file)

• ITS IMPORTANT YOU RENAME THE ASSEMBLER FILE to a txt extension ONCE

YOU HAVE GENERATED IT.
• Once you have RENAMED the assembler file, DELETE any assembler files

 Linux

rm *.s

 Windows

del *.s

ACTIVITY 4-3: USING MORE ADVANCED VECTORISATION OPTIONS

Enhancing the Auto-Vectorization Options
1. Build and run the application using the /QxAVX option (Linux: -xAVX) and record the results below.

For example:

 Linux

make clean
make CFLAGS= "-O2 -xAVX " TARGET=intel.AVX

.\intel.AVX.exe

 Windows

nmake clean
nmake CFLAGS= "/O2 /QxAVX " TARGET=intel.AVX

intel.AVX.exe

Shortest Time Taken to run _____________________________

Did the code run faster? Was the increase in performance what you expected?

Building for AVX2
2. Build and run the application using a different AVX2:

 Linux

make clean
make CFLAGS= "-O2 -xCORE-AVX2 " TARGET=intel.xAVX2

.\intel.xAVX2.exe

 Windows

nmake clean
nmake CFLAGS= "/O2 /QxCORE-AVX2 " TARGET=intel.xAVX2

intel.xAVX2.exe

What happens when you run the program? If it failed to run, can you suggest why?

Creating a Portable Application
3. Rebuild using the /Qax CORE-AVX2 (Linux: -ax CORE-AVX2) option:

 Linux

make clean
make CFLAGS= "-axCORE-AVX2 " TARGET=intel.axAVX2

.\intel.axAVX2.exe

 Windows

nmake clean
nmake CFLAGS= "/QaxCORE-AVX2 " TARGET=intel.axAVX2

intel.axAVX2.exe

5. Run the program. The program should run fine, even if your CPU does not support AVX.

6. Spend time examining the output of the axAVX option. (use the –S option, or one of the vec-report

options to get better visibility).

Can you explain the mechanism that the code uses to safely run?

