
Building Blocks
CPUs, Memory and Accelerators

Outline

• Computer layout

• CPU and Memory

• What does performance depend on?

• Limits to performance

• Silicon-level parallelism

• Single Instruction Multiple Data (SIMD/Vector)

• Multicore

• Symmetric Multi-threading (SMT)

• Accelerators (GPGPU and Xeon Phi)

• What are they good for?

Computer Layout

How do all the bits interact and which ones matter?

Anatomy of a computer

Data Access

• Disk access is slow

• a few hundreds of Megabytes/second

• Large memory sizes allow us to keep data in memory

• but memory access is slow

• a few tens of Gigabytes/second

• Store data in fast cache memory

• cache access much faster: hundreds of Gigabytes per second

• limited size: a few Megabytes at most

Performance

• The performance (time to solution) on a single computer

can depend on:

• Clock speed – how fast the processor is

• Floating point unit – how many operands can be operated on and

what operations can be performed?

• Memory latency – what is the delay in accessing the data?

• Memory bandwidth – how fast can we stream data from memory?

• Input/Output (IO) to storage – how quickly can we access

persistent data (files)?

Performance (cont.)

• Application performance often described as:

• Compute bound

• Memory bound

• IO bound

• (Communication bound – more on this later…)

• For computational science

• most calculations are limited by memory bandwidth

• processor can calculate much faster than it can access data

Silicon-level parallelism

What does Moore’s Law mean anyway?

Moore’s Law

• Number of
transistors
doubles every
18 months
• enabled by

advances in
semiconductor
technology and
manufacturing
processes

What to do with all those transistors?

• For over 3 decades until early 2000’s

• more complicated processors

• bigger caches

• faster clock speeds

• Clock rate increases as inter-transistor distances decrease

• so performance doubled every 18 months

• Came to a grinding halt about a decade ago

• reached power and heat limitations

• who wants a laptop that runs for an hour and scorches your trousers!

Alternative approaches

• Introduce parallelism into the processor itself

• vector instructions

• simultaneous multi-threading

• multicore

Single Instruction Multiple Data (SIMD)

• For example, vector addition:

• single instruction adds 4 numbers

• potential for 4 times the performance

Symmetric Multi-threading (SMT)

• Some hardware supports running multiple instruction
streams simultaneously on the same processor, e.g.
• stream 1: loading data from memory

• stream 2: multiplying two floating-point numbers together

• Known as Symmetric Multi-threading (SMT) or
hyperthreading

• Threading in this case can be a misnomer as it can refer
to processes as well as threads

• These are hardware threads, not software threads.

• Intel Xeon supports 2-way SMT

• IBM BlueGene/Q 4-way SMT

Multicore

• Twice the number of transistors gives 2 choices

• a new more complicated processor with twice the clock speed

• two versions of the old processor with the same clock speed

• The second option is more power efficient

• and now the only option as we have reached heat/power limits

• Effectively two independent processors

• … except they can share cache

• commonly called “cores”

Multicore

• Cores share path to memory

• SIMD instructions + multicore make

this an increasing bottleneck!

Intel Xeon E5-2600 – 8 cores HT

What is a processor?

• To a programmer

• the thing that runs my program

• i.e. a single core of a multicore processor

• To a hardware person

• the thing you plug in to a socket on the motherboard

• i.e. an entire multicore processor

• Some ambiguity

• in this course we will talk about cores and sockets

• try and avoid using “processor”

Chip types and manufacturers

• x86 – Intel and AMD
• “PC” commodity processors, SIMD (SSE, AVX) FPU, multicore,

SMT (Intel); Intel currently dominates the HPC space.

• Power – IBM
• Used in high-end HPC, high clock speed (direct water cooled),

SIMD FPU, multicore, SMT; not widespread anymore.

• PowerPC – IBM BlueGene
• Low clock speed, SIMD FPU, multicore, high level of SMT.

• SPARC – Fujitsu

• ARM – Lots of manufacturers
• Not yet relevant to HPC (weak FP Unit)

Accelerators

Go-faster stripes

Anatomy

• An Accelerator is a additional resource that can be used

to off-load heavy floating-point calculation

• additional processing engine attached to the standard processor

• has its own floating point units and memory

AMD 12-core CPU
• Not much space on CPU is dedicated to computation

= compute unit
(= core)

NVIDIA Fermi GPU

• GPU dedicates much

more space to

computation

• At expense of caches,

controllers, sophistication etc

= compute unit
(= SM
 = 32 CUDA cores)

Intel Xeon Phi
• As does Xeon Phi

= compute
unit
(= core)

Memory

• For most HPC applications, performance is very sensitive to memory

bandwidth

• GPUs and Intel Phi both use Graphics memory: much higher

bandwidth than standard CPU memory

CPUs use DRAM GPUs and Xeon Phi use Graphics
DRAM

Summary - What is automatic?

• Which features are managed by hardware/software and

which does the user/programmer control?

• Cache and memory – automatically managed

• SIMD/Vector parallelism – automatically produced by compiler

• SMT – automatically managed by operating system

• Multicore parallelism – manually specified by the user

• Use of accelerators – manually specified by the user

