

Advanced OpenMP

Lecture 9: OpenMP implementation

Introduction

•  How is an OpenMP program actually implemented?

•  As a programmer, it may help to understand this
–  understand program performance.
–  write more efficient code.

•  We will look at general structure and issues, rather than at a
particular implementation.

•  A typical OpenMP implementation has two parts: The
compiler and the runtime library.

Compiler

•  We won’t go into detail about how compilers work...

•  An OpenMP compiler transforms code with OpenMP
directives to standard code (Fortran/C/C++) with calls to the
OpenMP runtime library.

•  Two alternatives:
1. Source-to-source translator
2. Integral part of f90/cc/CC

Compilers (cont.)

•  Source-to-source translator does the transform literally: its
output is real, compilable source code with calls to runtime
library.

•  This is then compiled and linked by a standard compiler.

Pros: portable solution: same compiler can be used on multiple
platforms.

Cons: difficult to take advantage of all optimisation opportunities

Compilers (cont.)

•  If OpenMP is built in to the standard compiler (e.g. pgf90,
gcc), then no transformed source code is produced.

Pros: can better exploit opportunities for optimisation
–  can utilise special assembler instructions
–  fuller integration with sequential optimiser
–  better integration with debuggers.

Cons: non-portable, platform specific solution

Parallel regions

•  The body of the parallel region is placed inside a new
subroutine.
–  This is called outlining (opposite of inlining!)

•  The parallel region is replaced by a call to an OpenMP
runtime library function (run_in_parallel()).

•  The address of the outlined subroutine is passed as an
argument to run_in_parallel()

Data attribute scoping

•  Shared variables are passed in the argument list of the
outlined subroutine.

•  Private variables are declared locally inside the outlined
subroutine.

•  Reduction variables require both: a private variable for the
local copies and a shared variable for the final result.

•  Threadprivate global variables are more awkward.
–  can be implemented using an array of variables with lookup based on

thread number
–  need to modify references to the variable.
–  or by dirty tricks in the linker........

Example

OpenMP source code:

 INTEGER MYID, N

!$OMP PARALLEL SHARED(N), PRIVATE(MYID)

 MYID = OMP_GET_THREAD_NUM()

 PRINT *, “Hello from thread “, MYID, “ of “, N

!$OMP END PARALLEL

Example (cont.)

Transformed code:
 INTEGER MYID, N

 CALL RUN_IN_PARALLEL(_OMP_1_PR_,N,....)

 SUBROUTINE _OMP_1_PR_(N)

 INTEGER N !SHARED

 INTEGER MYID !PRIVATE

 MYID = OMP_GET_THREAD_NUM()

 PRINT *, “Hello from thread “, MYID, “ of “, N

 END

Master and workers

•  Master thread executes sequentially until first call to
run_in_parallel().

•  The first time run_in_parallel() is called, the master
thread creates worker threads.

•  Master thread assigns task to be done by workers, then also
executes task itself.

•  Master and workers synchronise at a barrier.

•  Master returns from run_in_parallel() and continues
executing sequentially.

•  Workers busy wait until master calls run_in_parallel()
again.

Master thread

run_in_parallel(task,args)

{

 if (firsttime) {

 for (i=1; i<nthreads; i++)

 pthread_create (&tid, attr, worker_func);

 }

 set_worker_task(task,args);

 task(args);

 barrier();

}

Worker threads

worker_func()

{

 while(1) {

 wait_for_task();

 task(args);

 barrier();

 }

}

Parallel loops

•  These are handled in a similar way to parallel regions

•  In the outlined subroutine, the real loop bounds are replaced
with dummy loop bounds, passed as arguments.

•  The runtime library will call the outlined routine for every loop
chunk, passing in the required bounds, depending on the
chosen schedule.

Example

OpenMP code:
!$OMP DO

 DO I = 1,N

 A(I) = B(I) + C(I)

 ENDDO

Outlined routine:

 SUBROUTINE _OMP_23_DO_(A,B,C,START,END)
 INTEGER I

 DO I = START,END

 A(I) = B(I) + C(I)

 ENDDO

Synchronisation

•  Lock routines can be implemented using Pthread mutexes,
or more efficiently via assembly instructions (atomic test-and-
set)

•  Critical sections are simply a lock/unlock pair.
–  use different locks for differently named sections
–  necessary to manage a global name space of named sections

•  Atomic directive can be implemented as a critical section with
a special name.
–  but much better to use assembly instructions

Synchronisation (cont.)

•  A simple barrier can be written using a using a locked
counter.
–  When each thread arrives it increments the counter and busy waits on

a global flag.
–  Last thread in resets counter and toggles the flag.

•  Rather inefficient: cost is (at least) O(p).

•  Much better to use a tree structure which costs O(log(p)) -
synchronise between subsets first.

•  Can also avoid use of locks.

Synchronisation (cont.)

•  Master directive is trivial:

 if (omp_get_thread_num() = 0)
 {

 }

•  Single directive is more tricky
–  When a thread arrives it checks a flag. If it is the first to arrive, it sets

the flag and executes the block. Otherwise skip the block. Flag
requires a mutex: can be a bottleneck.

Reductions

•  Simplest way is to reduce into the shared variable, protected
by a mutex lock.
–  inefficient: scales as O(p) or worse.
–  causes non-reproducible results for floating point operations. (running

identical code on the same number of threads may give different
answers on different runs!)

•  Better to use a tree structure, similar to a barrier
–  scales as O(log(p))
–  can be made reproducible by enforcing the order of operations.

