Advanced OpenMP

Lecture 2:

Multicore chips

* Now possible (and economically desirable) to place multiple
processors on a chip.

* From a programming perspective, this is largely irrelevant

— simply a convenient way to build a small SMP
— on-chip buses can have very high bandwidth

* Main difference is that processors may share caches

* Typically, each core has its own Level 1 and Level 2 caches,
but the Level 3 cache is shared between cores

3
R
o
_.,...

Chip

| cPU |

| cPU |

| cPU |

| cPU |

N W W

[L1]

[L1]

[Lt]

[L1]

- - = = |

e || || || |

o W W W

L3 Cache

Typical cache hierarchy

Main Memory

-
—

A
Power4 two-core chip ‘“‘@m

=R TR AR
Intel Nehalem quad-core aﬂ% W‘

c , gl fple o ¢ Hpleg- ¢
DDR3address DDR3% "} DDRIIDATAI6332]

Corel0; =2
. oo

il n 1]

2':NMB
0)f
8 MB L3
ECache

MBI =2 MB
Eofs - l off 1
8IMB 123 8MB; -3

YIIMSHUONBIIUNWOS)-R-36pg-YHON]|

iy
~3 1

ldna

19T 1o
TG

kil

’

1
. 1
S und zecbh

| B

\

* This means that multiple cores on the same chip can

communicate with low latency and high bandwidth
— via reads and writes which are cached in the shared cache

* However, cores contend for space in the shared cache

— one thread may suffer capacity and/or conflict misses caused by
threads/processes on another core

— harder to have precise control over what data is in the cache

— if only single core is running, then it may have access to the whole
shared cache

* Cores also have to share off-chip bandwidth
— for access to main memory

Latency hiding with multiple 'th“rém

* A processor may frequently stall while a memory access is in
progress

* Better use of the processor may be made by running
another thread in the “gap”
— latency hiding

e Cannot be done with standard multitasking

— cost for a context switch by the OS is ~1000s of cycles
— longer than a main memory access

Conventional multithreading

* With hardware support, a thread switch can be done in a

single clock cycle
— may need to have multiple register files, one for each thread

* Can simply round-robin threads on consecutive cycles, or
switch when a thread stalls on a load.

* Extreme example is the Cray XMT

— 128 threads per processor
— no data caches

— typical applications require 10-20 threads per processor to hide
memory latencies

* Also used in Intel Xeon Phi
— ~60 cores, 4 threads per core

S . A - !.
- A

Empty instruction slots

* Most modern processors are superscalar
— can issue several instructions in every clock cycle

— selection and scheduling of instructions is done on-the-fly, in
hardware

* A typical processor can issue 4 or 5 instructions per clock,
going to different functional units

— obviously, there must be no dependencies between instructions issue
on the same cycle

* However, typical applications don’ t have this much

instruction level parallelism (ILP)
— 1.5 0r 2is normal
— more than half the available instruction slots are empty

SMT S L o

* Simultaneous multithreading (SMT) (a.k.a. Hyperthreading)
tries to fill these spare slots by mixing instructions from more

than one thread in the same clock cycle.

* Requires some replication of hardware
— instruction pointer, instruction TLB, register rename logic, etc.
— Intel Xeon only requires about 5% extra chip area to support SMT

* ...but everything else is shared between threads

— functional units, register file, memory system (including caches)
— sharing of caches means there is no coherency problem

* For most architectures, two or four threads is all that makes
sense

11

SMT example AL ‘“‘@m

Time

Two threads on two CPUs
Two threads on one SMT CPU

RN

More on SMT

* How successful is SMT?

— depends on the application, and how the 2 threads contend for the
shared resources.

* In practice, gains seem to be limited to around 1.2 to 1.3

times speedup over a single thread.
— benefits will be limited if both threads are using the same functional

units (e.g. FPUs) intensively.

* For memory intensive code, SMT can cause slow down

— caches are not thread-aware

— when two threads share the same caches, each will cause evictions
of data belonging to the other thread.

RERNRA L - 13

Multicore vs. SMT i N o

* Can view multicore and SMT as two extremes of a replication

continuum
— multicore replicates the entire CPU
— SMT replicates as little as possible

* May in the future see something in-between
— e.g. multiple cores which share some functional units
— AMD Bulldozer core share a floating point unit

* Will seriously complicate the notion of how many processors

there are in a system!

— already a problem with SMT cores counted as two “virtual
processors”

RERNRA L - 14

