
Advanced OpenMP

Lecture 2:

Multicore and multithreaded processors

2

Multicore chips

•  Now possible (and economically desirable) to place multiple
processors on a chip.

•  From a programming perspective, this is largely irrelevant
–  simply a convenient way to build a small SMP
–  on-chip buses can have very high bandwidth

•  Main difference is that processors may share caches

•  Typically, each core has its own Level 1 and Level 2 caches,
but the Level 3 cache is shared between cores

3

Typical cache hierarchy

L3 Cache

CPU

L1

L2

CPU

L1

L2

CPU

L1

L2

CPU

L1

L2

Main Memory

Chip!

4

Power4 two-core chip

5

Intel Nehalem quad-core chip

6

Power7 8-core chip

7

•  This means that multiple cores on the same chip can
communicate with low latency and high bandwidth
–  via reads and writes which are cached in the shared cache

•  However, cores contend for space in the shared cache
–  one thread may suffer capacity and/or conflict misses caused by

threads/processes on another core
–  harder to have precise control over what data is in the cache
–  if only single core is running, then it may have access to the whole

shared cache

•  Cores also have to share off-chip bandwidth
–  for access to main memory

8

Latency hiding with multiple threads

•  A processor may frequently stall while a memory access is in
progress

•  Better use of the processor may be made by running
another thread in the “gap”
–  latency hiding

•  Cannot be done with standard multitasking
–  cost for a context switch by the OS is ~1000s of cycles
–  longer than a main memory access

9

Conventional multithreading

•  With hardware support, a thread switch can be done in a
single clock cycle
–  may need to have multiple register files, one for each thread

•  Can simply round-robin threads on consecutive cycles, or
switch when a thread stalls on a load.

•  Extreme example is the Cray XMT
–  128 threads per processor
–  no data caches
–  typical applications require 10-20 threads per processor to hide

memory latencies

•  Also used in Intel Xeon Phi
–  ~60 cores, 4 threads per core

10

Empty instruction slots

•  Most modern processors are superscalar
–  can issue several instructions in every clock cycle
–  selection and scheduling of instructions is done on-the-fly, in

hardware

•  A typical processor can issue 4 or 5 instructions per clock,
going to different functional units
–  obviously, there must be no dependencies between instructions issue

on the same cycle

•  However, typical applications don’t have this much
instruction level parallelism (ILP)
–  1.5 or 2 is normal
–  more than half the available instruction slots are empty

11

SMT

•  Simultaneous multithreading (SMT) (a.k.a. Hyperthreading)
tries to fill these spare slots by mixing instructions from more
than one thread in the same clock cycle.

•  Requires some replication of hardware
–  instruction pointer, instruction TLB, register rename logic, etc.
–  Intel Xeon only requires about 5% extra chip area to support SMT

•  ...but everything else is shared between threads
–  functional units, register file, memory system (including caches)
–  sharing of caches means there is no coherency problem

•  For most architectures, two or four threads is all that makes
sense

12

SMT example

Time!

Two threads on two CPUs"
Two threads on one SMT CPU"

13

More on SMT

•  How successful is SMT?
–  depends on the application, and how the 2 threads contend for the

shared resources.

•  In practice, gains seem to be limited to around 1.2 to 1.3
times speedup over a single thread.
–  benefits will be limited if both threads are using the same functional

units (e.g. FPUs) intensively.

•  For memory intensive code, SMT can cause slow down
–  caches are not thread-aware
–  when two threads share the same caches, each will cause evictions

of data belonging to the other thread.

14

Multicore vs. SMT

•  Can view multicore and SMT as two extremes of a replication
continuum
–  multicore replicates the entire CPU
–  SMT replicates as little as possible

•  May in the future see something in-between
–  e.g. multiple cores which share some functional units
–  AMD Bulldozer core share a floating point unit

•  Will seriously complicate the notion of how many processors
there are in a system!
–  already a problem with SMT cores counted as two “virtual

processors”

