
Advanced OpenMP 

Lecture 2:  

Multicore and multithreaded processors 
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Multicore chips 

•  Now possible (and economically desirable) to place multiple 
processors on a chip. 

•  From a programming perspective, this is largely irrelevant 
–  simply a convenient way to build a small SMP 
–  on-chip buses can have very high bandwidth 

•  Main difference is that processors may share caches 

•  Typically, each core has its own Level 1 and Level 2 caches, 
but the Level 3 cache is shared between cores 
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Typical cache hierarchy  
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Power4 two-core chip 
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Intel Nehalem quad-core chip 
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Power7 8-core chip  
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•  This means that multiple cores on the same chip can 
communicate with low latency and high bandwidth  
–  via reads and writes which are cached in the shared cache 

•  However, cores contend for space in the shared cache 
–  one thread may suffer capacity and/or conflict misses caused by 

threads/processes on another core 
–  harder to have precise control over what data is in the cache 
–  if only single core is running, then it may have access to the whole 

shared cache 

•  Cores also have to share off-chip bandwidth 
–  for access to main memory 
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Latency hiding with multiple threads 

•  A processor may frequently stall while a memory access is in 
progress 

•  Better use of the processor may be made by running  
another thread in the “gap”  
–  latency hiding   

•  Cannot be done with standard multitasking 
–  cost for a context switch by the OS is ~1000s of cycles 
–  longer than a main memory access 
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Conventional multithreading 

•  With hardware support, a thread switch can be done in a 
single clock cycle 
–  may need to have multiple register files, one for each thread 

•  Can simply round-robin threads on consecutive cycles, or 
switch when a thread stalls on a load. 

•  Extreme example is the Cray XMT  
–  128  threads per processor 
–  no data caches 
–  typical applications require 10-20 threads per processor to hide 

memory latencies 

•  Also used in Intel Xeon Phi  
–  ~60 cores, 4 threads per core  
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Empty instruction slots 

•  Most modern processors are superscalar 
–  can issue several instructions in every clock cycle 
–  selection and scheduling of instructions is done on-the-fly, in 

hardware 

•  A typical processor can issue 4 or 5 instructions per clock, 
going to different  functional units 
–  obviously, there must be no dependencies between instructions issue 

on the same cycle 

•  However, typical applications don’t have this much 
instruction level parallelism (ILP) 
–  1.5 or 2 is normal 
–  more than half the available instruction slots are empty 
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SMT 

•  Simultaneous multithreading (SMT) (a.k.a. Hyperthreading) 
tries to fill these spare slots by mixing instructions from more 
than one thread in the same clock cycle. 

•  Requires some replication of hardware 
–  instruction pointer, instruction TLB, register rename logic, etc. 
–  Intel Xeon only requires about 5% extra chip area to support SMT 

•  ...but everything else is shared between threads 
–  functional units, register file, memory system (including caches) 
–  sharing of caches means there is no coherency problem 

•  For most architectures, two or four threads is all that makes 
sense 
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SMT example 

Time!

Two threads on two CPUs"
Two threads on one SMT CPU"
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More on SMT  

•  How successful is SMT?  
–  depends on the application, and how the 2 threads contend for the 

shared resources. 

•  In practice, gains seem to be limited to around 1.2 to 1.3 
times speedup over a single thread. 
–  benefits will be limited if both threads are using the same functional 

units (e.g. FPUs) intensively. 

•  For memory intensive code, SMT can cause slow down 
–  caches are not thread-aware 
–  when two threads share the same caches, each will cause evictions 

of data belonging to the other thread. 
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Multicore vs. SMT 

•  Can view multicore and SMT as two extremes of a replication 
continuum 
–  multicore replicates the entire CPU 
–  SMT replicates as little as possible 

•  May in the future see something in-between  
–  e.g. multiple cores which share some functional units 
–  AMD Bulldozer core share a floating point unit 

•  Will seriously complicate the notion of how many processors 
there are in a system! 
–  already a problem with SMT cores counted as two “virtual 

processors” 


