Jussi Enkovaara
CSC - IT Center for Science, Finland

GPRW!

o Introduction to GPAW
- Projector-augmented wave method
- Basis sets in GPAW

v Using Atomic Simulation Environment and GPAW
@ Hands-on exercises

@ Lunch

v Time-dependent DFT with GPAW
v Parallel calculations (+ other features by request)
@ Hands-on exercises

GPRW!

v Implementation of projector augmented wave
method on

- uniform real-space grids, atomic orbital basis, plane
waves

v Density-functional theory, time-dependent DFT,
many-body perturbation theory, ...

v Massively parallelized

wiki.fysik.dtu.dk/gpaw

gpaw-users @listserv.fysik.dtu.dk

J. J. Mortensen et al., Phys. Rev. B 71, 035109 (2005)
J. Enkovaara et al., J. Phys. Condens. Matter 22, 253202 (2010)

@ Open source software licensed under GPL

- 20-30 developers in Europe and USA
Y% ' Ly

!Y

' T ..
oy ‘ [-
St T : o - Y
e "“‘ g - ’
i " | K
4 ; . [4 .

@ The main GPAW references cited ~350 times
@ ~300 subscribers in users mailing list

GPRW!

o Total energies, forces, structural optimization
- analysis of electronic structure
v Excited states, optical spectra
- Non-adiabatic electron-ion dynamics
@ Wide range of XC-potentials (thanks to libxc!)
- LDAs, GGAs, meta-GGAs, hybrids, DFT+U, vdW, RPA
v Electron transport
o GW-approximation, Bethe-Salpeter equation

vlll

GPRW!

v Exact all-electron formalism

v “Pseudopotentials done right”

@ Good description over the whole periodic table
v Access to full wave functions and density

@ Norm-conserving and ultrasoft pseudopotentials
can be derived as approximations to PAW

GPRW!

v Linear transformation from pseudo wave functions
to all-electron wave functions

V) = Tl
v Transformation operator

—HZ(W) (52

¢g”> all-electron atomic orbital

q%l} pseudo atomic orbital

ﬁ?) projector function

o Core electrons are frozen

GPRW!

@ Projector functions are localized
inside the augmentation spheres

p(r) =0,r > R,

o All-electron orbitals and pseudo Example: Platinum
orbitals are equal outside the
augmentation spheres

1

0.8

¢’(LI (T) — Qgg (T)’ T > Ra Z:i:
0.2 Tlﬂl". & // o7

v Projector functions are
orthogonal to pseudo orbitals \

2) N ok
L] e ‘
_0 : 4 "\/ 1

1 I 1 1 I 1
0 0.5 1 1.5 2 2.5 3 3.5 4

<ﬁg‘q;§,> _ 529 7 [bohr]

o

GPRW!

@ The projector functions and partial waves are
constructed from all-electron calculation for
spherical symmetric atom

v To be exact, infinite number of projectors and
partial waves is needed

- In practice, 1-2 functions per angular momentum is
enough

GPRW!

v Inside augmentation spheres one can define
one-center expansions of AE and PS state

Ya(r) =) PiLoi(r)
Ya(r) =) Prdir)

with expansion coefficients
Pz'a;m — <ﬁza‘7»zn>

o All electron wave function can now be written as

¢n — QZn =+ Z(¢g 'S 1;2)

GPRW!

@ Within frozen core approximation expectation
value of operator O is

val

(O) = falthn|Olthn) + Y Y (9% |O]p%T)

v By inserting the PAW expression, one obtains for
(semi)local operators

(UnlOlbn) = (BulOldhn) + Y ((w2lONER) — (3I0105))

= 0+ (0"-0)

GPRW!

@ PAW Hamiltonian can be written as

o= i) + 30 35 AHL, (5,

a ’Ll’LQ

v Pseudo wave functions are orthonormal only with
respect to overlap operator

Wilp) = (| TTT|py) = (s| S|epy) =

v Generalized eigenvalue equation

GPRW!

@ Finite number of projectors

- typically two projectors per angular momentum are
used

v Truncated angular momentum expansions
@ Overlapping augmentation spheres
v Frozen core

GPRW!

o A set of

~

¢a7 ¢a7 ﬁa7 ng7 ,ﬁ’g7 /l_}al
for a single atom constitutes a PAW setup
v Setups are generated for individual atoms

@ The actual PAW calculations use pregenerated
setups

v Setup testing is non-trivial and time-consuming
- correct properties for the particular atom
- transferability in different molecules and solids

Basis sets in GPAW GPAWI

v Real-space grids
o Localized atomic orbital basis
@ Plane waves

Real-space grids GPAW!

o Wave functions, electron densities, and potentials
are represented on grids.

v Single parameter, grid spacing h

@ Accuracy of calculation can be improved
systematically

v Derivatives by finite differences

GPRW!

v Real-space description allows flexible boundary
conditions

v Zero boundary conditions (finite systems)

- Useful especially in charged systems
v Periodic boundary conditions (bulk systems)
@ Boundary conditions can be mixed

- periodic in one dimension (wires)

- periodic in two dimensions (surfaces)

GPRW!

v Linear combination of atomic orbitals (LCAQ)
provide compact basis set

=) Cru®,(r)
nlm(r) — R?Ll(|r o RCLD}/lm(I‘ >3 Ra)

@ The atomic orbitals are obtained from a free atom
In a confining potential well

v Systematic improvement of accuracy is non-trivial

o Possible to switch between localized basis and
real-space grids

GPRW!

@ Functions which are periodic with respect to unit
cell can be written as sum of plane waves

wnk(Q1/2 Z OG nke Gl

_ Z nGeiG-r V(I’) *, Z VGeiG r
G G

@ The expansion is truncated according to
1
§‘G + k|2 < Ecutoff

@ Only periodic cells (supercells)

@ Real-space grids

systematic convergence with single parameter

good parallelization prospects
some integrals complicated in real-space

o Localized basis set

compact basis
systematic convergence can be difficult

« Plane waves

systematic convergence with single parameter
some integrals simplified in reciprocal space
very efficient in small to medium size systems
parallelization more limited due FFTs

GPRW!

L CIO

0O®

OP®®

GPRW!

Using the Atomic Simulation
Environment

GPRW!

« ASE is a Python package for
- building atomic structures ASE
- structure optimization and molecular
dynamics i energies,
- analysis and visualization Dositions fOVI’vflgSeS
@ ASE relies on external software which densities

provides total energies, forces, etc.
- GPAW, Abinit, Siesta, Vasp, Castep, ...
v Input files are Python scripts

- calculations are run as “python input.py” CaICUIator

- simple format, no knowledge of Python
required

- knowledge of Python enables great flexibility
@ Simple graphical user interface wiki.fysik.dtu.dk/ase

GPRW!

v Specifying atomic positions directly

from ase.all import * # Setup the atomic simulation environment

do = 1.10
x = d0 / sqgrt(3)
atoms = Atoms('CH4',

positions=[(0.0, 0.0, 0.0), # C
(x, %X, X), # H1
(-XI -Xy X)l # H2
(-x, x, -X), # H3
(x, -x, =-X)] # H4

view(atoms)

@ Reading atomic positions from a file

atoms = read('CH4.xyz')
view(atoms)

- Several file formats supported

GPRW!

v By default, the simulation cell of an Atoms object has
zero boundary conditions and edge length of 1 A

@ Unit cell can be set when constructing Atoms

atoms

= Atoms(..., # positions must be now in absolute coordinates
cell=(1., 2., 3.), pbc=True)# or pbc=(True, True, True)

or later on

atoms = Atoms(...) # positions in relative coordinates

atoms.set cell((2.5, 2.5, 2.5), scale atoms=True)

atoms.set pbc(True) # or atoms.set pbc((True, True, True))

atoms = ...

atoms.center(vacuum=3.5) # finite system 3.5 A empty space around atoms

atoms
atoms
atoms

.set pbc((False, True, True)) # surface slab
.center(axis=0, vacuum=3.5) # 3.5 A empty space in x-direction

GPRW!

@ Length: A
v Energy: eV

v Easy conversion between units:

from ase.units import Bohr, Hartree

a0 * Bohr # a0 in a.u., a in A
E0 * Hartree # E0 in Hartree, E in eV

a
E

- also Rydberg, kcal, nm, ...

Pre-defined molecules and < GPAW!
structures

@ Database of small molecules (G2-1 and G2-2 sets)

Erom ase.structure import molecule

ol = molecule('C6H6') # coordinates from MP2 calculation
ol.center(3.5) # molecule() returns unit cell of 1 A

@ Bulk structures of elemental materials

from ase.lattice import bulk

atoms = bulk('Si') # primitive (2-atom) unit cell with exp. lattice constant
bulk('Si', cubic=True) # cubic 8-atom unit cell

atoms conv
bulk('Si', a=5.4) # User specified lattice constant

atoms my a

GPRW!

v Existing Atoms objects can be “repeated” and
individual atoms removed

from ase.lattice import bulk

atoms = bulk('Si', cubic=True) # cubic 8-atom unit cell
supercell = atoms.repeat((4, 4, 4)) # 512 atom supercell
del supercell[0] # remove first atom, e.g. create a vacancy

w Utilities for working with surfaces

from ase.lattice.surface import fcclll, add adsorbate

slab = fcclll('Cu', size=(3,3,5)) # 5-layers of 3x3 Cu (1ll1l1l) surface
add O atom 2.5 A above the surface in the 'bridge' site
add adsorbate(slab, '0O', 2.5, position='bridge')

GPRW!

@ |n order to do calculation, one has to define a
calculator object and attach that to Atoms

from ase.structure import molecule # Setup the atomic simulation environment
from gpaw import GPAW # Setup GPAW

atoms = molecule('CH4')

atoms.center(3.5)

[calc = GPAW() # Use default parameters

atoms.set calculator(calc)

atoms.get potential energy() # Calculate the total energy

v Specifying calculator parameters

calc = GPAW(h=0.18, nbands=6, # 6 bands and grid spacing of 0.20 A
kpts=(4,4,4), # 4x4x4 Monkhorst-Pack k-mesh
XCc='PBE', txt='out.txt') # PBE and print text output to file

@ See wiki.fysik.dtu.dk/gpaw/documentation/manual.htm! for all
parameters

GPRW!

v Serial calculations and analysis can be carried out
with normal Python interpreter

[jenkovaa@flamingo ~]1$ python input.py

v Parallel calculations with gpaw-python
executable

#PBS -N gpaw_test
#PBS -1 select=4
#PBS -1 walltime=00:20:00

aprun -n 96 gpaw-python input.py

GPRW!

Structural optimization

from ase.all import * # Setup the atomic simulation environment
from gpaw import GPAW # Setup GPAW
atoms = ...

lcalc = GPAW(...)
atoms.set calculator(calc)

opt = BFGS(atoms, trajectory='file.traj') # define an optimizer
|opt.run(fmax=0.05) # optimize the structure until forces smaller than 0.05 ev / &

@ See wiki.fysik.dtu.dk/ase/ase/optimize.html
for supported optimizers

v “Best” optimizer is case-dependent

atoms = .
calc = GPAW(...)
atoms.set calculator(calc)

Check convergence with grid spacing
for h in [0.35, 0.30, 0.25, 0.20, 0.18]:
txtfile = 'test _h' + str(h) + '.txt'
calc.set(h=h, txt=txtfile)
e = atoms.get potential energy()
print h, e

import numpy as np

atoms = .

calc = GPAW(...)

atoms.set calculator(calc)

lattice constant for different XC-functionals
for xc in ['LDA', 'PBE']:
for a in np.linspace(3.8, 4.3, 5):
txtfile = 'test %xc ' + xc + ' a' + str(s) + '.txt'
atoms.set cell((a, a, a), scale atoms=True)
calc.set(xc=xc, txt=txtfile)
e = atoms.get potential energy()

GPRW!

GPRW!

@ Saving full state of calculation: .gpw-files (or
.hdf5-files)

calc = GPAW(...)

atoms.set calculator(calc)

atoms.get potential energy() # Calculate the total energy
calc.write('myfile.gpw') # Atomic positions, densities, calculator parameters

calc.write('myfile.gpw', mode='all') # Save also wave functions (larger files)

calc.write('myfile.hdf5', mode='all') # If GPAW is build with HDF5 support

v Restarting

from ase.all import * # Setup the atomic simulation environment
from gpaw import restart # Setup GPAW

atoms, calc = restart('file.gpw')

e0 = atoms.get potential energy() # no calculation needed

calc.set(h=0.20)

el = atoms.get potential energy() # calculation total energy with new grid

GPRW!

o Trajectories: atomic positions, energies, forces

calc = GPAW(...)
atoms.set calculator(calc)
traj = PickleTrajectory('file.traj', 'w', atoms) # define a trajectory file
for a in np.linspace(3.8, 4.3, 5):
txtfile = 'test xc_ ' + xc + ' _a' + str(s) + '.txt'
atoms.set cell((a, a, a), scale atoms=True)
atoms.get potential energy()
traj.write() # write cell and energy to trajectory file

v Reading atomic positions

from ase.all import * # Setup the atomic simulation environment
from gpaw import GPAW # Setup GPAW

atoms = read('file.traj"') # read the last image
first = read('file.traj', 0) # first image
calc = GPAW(...)

atoms.set calculator(calc) # calculator has to be attached

GPRW!

v Trajectory can be investigated with ase-gui tool

[jenkovaa@flamingo ~]$ ase-gui file.traj

v |Investigate how total energy, forces, bond lengths
etc. vary during simulation

Exercises GP AW

o Go to
wiki.fysik.dtu.dk/gpaw/exercises/exercises.html
and get your hands dirty!

GPRW!

Time-dependent DFT with GPAW

GPRW!

v Generalization of density-functional theory also to
time-dependent cases

@ Runge-Gross theorem PRL 52 (1984)
- one-to-one mapping between the
time-dependent potential and the density

v Excited state properties
- excitation energies, optical spectra, ...
v Time-dependent Kohn-Sham equations

z@?% (T, t)

— Hwi(’r, t)

GPRW!

v Direct integration of time-dependent Kohn-Sham
equations in time-domain

_87702'(7“, t) o .
i = H(t ()

n(r,t) =) [¢i(rt)

v Integration is done with Crank-Nicholson type
scheme:

14 i H(8) A i (t + At) = [1 — iH (£) At] s (¢)

v Initial value problem, the starting value ,(t = 0)
Is obtained from ground state calculation

GPRW!

v Excite the system with delta pulse E(t) = ¢k°§(¢)
@ Wave functions change instantaneously to

P(t = 01) = exp (iek® - r) Y (t = 0)

v Time-propagate wave functions and record the
time-dependent dipole moment

v Spectra can be obtained via Fourier transform of
the time-dependent dipole-moment

GPRW!

v Perform ground state calculation and save the

wave functions

from ase.all import *
from gpaw import GPAW

atoms = ...

atoms.center(5.0) # may need to be larger in real calculations
calc = GPAW(h=0.30)

atoms.set calculator(calc)

atoms.get potential energy()

calc.write('gs.hdf5', mode='all')

v Time-propagate

from gpaw.tddft import TDDFT

time step = 16.0 # as
iters = 650 # 650 x 16 as 10.4 f£fs
kick = [0,0,1le-3] # Weak delta kick to z-direction

td calc = TDDFT('gs.hdf5")
td calc.absorption kick(kick)
td calc.propagate(time step, iters, 'dmz.dat')

GPRW!

v Calculate the optical spectra

from gpaw.tddft import photoabsorption spectrum

photoabsorption spectrum('dmz.dat', 'spectrum z.dat', width=0.2)

3.0

25| A

2.0

1.5¢

10

Dipole strength (1/eV)

0.5

~0-% 2 4 6 8 10
Energy (eV)

GPRW!

v Depending on the symmetry of system, separate
kick in all x,y,z directions may be needed.

@ Normally, the size of simulation box has to be
larger than in ground state calculations

@ Grid spacing can often be larger than in ground
state calculations

v Time-step affects the accuracy of spectra (too
large time-step may lead into unstable
propagation)

v Total simulation time affects the resolution of
spectra.

Box size GP AW

— R_=72A
ok ﬂ vac u .
— R, =82A
— R, =112A
1.5}

PP Small box NOT OK

Larger box damps
artificial oscillations

Dipole strength [1/eV]

—
Nl
®

n

0

0 / 2 4 I 6
Small box OK lonization
threshold

hv [eV]

Grid spacing GPAW!

24 3
i — h=026A :
2F * — h=0.30A :
> | B = h-036A]
= = =
:].6 — (e Q =
| 3 B N
= 12} 5 poseedigeluggagt oy |
= = : B3
17 - = [OOh=0.26A - 1]
Q S »lEEh=030A @ |
o 0.8} 5 T|°®h=036A b "
Y e e T T
A

hv [eV]
Eigenvalues are important, not forces or total energy!

Time step GPAW!

&
(=
|

——

«4— Higher energy-_
=> |arger error

0.03F

0.02} ”

Dipole strength [1/eV]

o
b

0 S 16 24 32 40 48

Total simulation time GP‘\WI

6 ' T ' 1
T T = 8 fS
S — T =16 fs =
_ -« T=321s :
e
L 4 -
= Spectrum is convoluted by
= . . .
0 3 sinc-function (=sin(x)/x) =
= |
o = -
7, p(t)e rdt = _
L 0
2 ek sin(7Tw .
E‘ / flw) (Tw) dw
1= J— oo Tw =
= ; ' |I' . | < -
0 5 10 15

hv [eV]

Double simulation time => double resolution

GPRW!

o Small perturbation to ground state potential
Vezt = Veat.0 + 0Vert(t)
results a change in density
n(r,t) = no(r) + ni(r,t)
o Within linear response:

ny(r,w) = /d?’rx(’r, ', w)0Vez (r',w)

o TD-DFT:
’nl(’)",W) — /dSTXO(Tv T/,CU)(S‘/eff(T‘,,CU)

@ The interacting response function can be obtained
from the non-interacting one

GPRW!

v Dyson-like equation for density-density response:
X(ra rla (,d) — XO(rv rlv CU)

" // dridry xo(r,r1,w)K(r1,r2)x(re, ', W)
2

@ Non-interacting response function is constructed
from ground state Kohn-Sham orbitals

v Coupling kernel is: K(ri,ry) = T : Y + fac[n)(r1,1r2)
LT
OV [n](r1)
on(rs)

with XC kernel Jac(ri,ma) =

GPRW!

v Non—interacting response function is given by

r r’ w kz; ﬂZn: " + € — Z::J:l—l— an k(r)¢n'k+q(r)¢nk(r’)¢:'k+q(r’)

@ Occupation numbers, eigenvalues and ground
state orbitals of occupied and unoccupied states

v |In extended systems one solves the Dyson
equation in plane wave basis

- ground state calculation can be done in any basis

GPRW!

v Dielectric matrix is related to the interacting
response function

q 47

EG(}’(qa w) — 6GG’ | |q i G‘z XGG’(qaw)

@ Macroscopic dielectric function

1
EM(qv w) — e T}

v Optical spectra
ABS = Imey(q — 0,w)

@ Electron-energy loss spectra

1
EELS = —Im
EM(qa w)

GPRW!

v Excitation energies can be calculated from
eigenvalue equation:
QF; = wiFy,
where

2
Qijokir = 0ik0j100rE ;5 + 24/CijoClir Kijo kir
Eij — & — &4

with the coupling kernel

1
71 255

Kijokir = f dridrang;, (r1) [+ fac(r1,m2) | nEir(72)

Nijo (1) = Yio (1) V0 (1)

@ | and j indexes go through occupied and
unoccupied states, respectively

GPRW!

@ Dipole oscillator strengths of excitations can be
calculated from the eigenvectors
2

fro = Z(¢ia|7“a|¢ja>\/€z'joFI

1]0

v Spectra with finite peak widths are obtained by
folding the oscillators strengths e.g. with Gaussian

Sa(w) =Y frag(w — wy)

GPRW!

v Perform ground state calculation and include also

unoccupied states

[calc = GPAW(nbands=1, h=0.30, txt='Na2z gs.txt')
atoms.set calculator(calc)
[e = atoms.get potential energy()

Calculate also unoccupied states with the fixed density
eig = CG() # unoccupied states converge often better with cg

eigensolver=eig,
fixdensity=True)

[e = atoms.get potential energy()

write the wave functions to a file
[calc.write('na2 gs.gpw', 'all')

from ase.all import * # Setup the atomic simulation environment
from gpaw import GPAW # Setup GPAW

from gpaw.eigensolvers import CG # Conjugate gradient eigensolver

atoms = ...

atoms.center(vacuum=5.0) # More vacuum might be needed in reality...

calc.set(nbands=20, convergence={'bands': 'all'}, # converge unoccupied states

GPRW!

@ Calculate Q matrix

from gpaw import * # Setup GPAW
from gpaw.lrtddft import *

atoms, calc = restart('na2 gs.gpw') # read in a ground state calculation

Calculate the omega matrix
lr = LrTDDFT(calc, xc='LDA')
Save the omega matrix
lr.write('Omega Na2.gz')

@ Diagonalization can be performed in separate step

from gpaw.lrtddft import *

Read the omega matrix from a file

lr = LrTDDFT(filename="'0Omega Na2.gz')

Diagonalize the matrix

lr.diagonalize()

Print out five lowest excitations

lr.analyse(range(5))

Calculate the absorption spectrum and save it to a file

photoabsorption spctrum(lr, 'Na2 spectrum.dat', e min=0.0, e max=10, width=0.1)

GPRW!

@ |n addition to the box size and grid spacing,
accuracy is controlled by the number of
electron-hole pairs

v The computational intensity of the calculation is
C)(Neh?’)

@ The size of electron-hole basis can be reduced:

lr = LrTDDFT(calc, xc='LDA',
istart=5, # first occupied state to consider
jend=20) # last unoccupied state to consider

@ The proper number of eh-pairs is very system
dependent

GPRW!

v Real-time
- only excitations corresponding to given perturbation
- non-linear effects
- scales O(N?) with the system size, large prefactor

- time step controls the accuracy relatively
straightforwardly

v Linear response
- all excitations (within linear response)
- scales O(N°®) with the system size, small prefactor

- control of accuracy by the electron-hole basis size
can be complex

GPRW!

Parallel calculations with GPAW

GPRW!

Hk,swi,k,s(f'a) — eiswz’,k,s(r)
iatwi,s(rat) — sti,s(rat)
n(r) = > |ins(r)f

i,k,s

v Parallelization over all degrees of freedom
- real-space grid
- k-points and spin
- electronic states
« Additional trivial parallelizations possible
- Electron-hole pairs
- different atomic configurations or unit cells

@ Spin and k-points are treated equivalently

o Trivial paralle

o Limited scala
- k-points on

1zation
oility

y in (small) periodic systems

- spin only in magnetic systems

o All basis sets

GPRW!

GPRW!

« Domain decomposition

Pl P2 Finite difference Laplacian +
+ PAW augmentation sphere Q

P3 PT

@ Only local communication

v Good parallel scalability down to domain sizes
~16x 16 X 16

« Not available in plane wave mode

GPRW!

o Nearly trivial parallelization in real-time TDDFT
- (similar to k-points)
- good scalability down to 20 states per process

@ Orthonormalizations are complicated in ground
state DFT

- communication of all wave functions to all processes

- parallel scalability down to 150-250 states per
process

- all basis sets

GPRW!

v Casida equation in linear response TD-DFT:
QF[— W%F[,

2
Qijo,le — 6i/€5jl507'57;jg + 2\/5ij05kl’rK’ijJ,le

v Matrix elements can be calculated independently

o Nearly trivial parallelization over electron-hole
pairs ij

@ Domain decomposition for individual matrix
elements

GPRW!

160007

12000¢

8000¢

>peeaup

4000}

— Mem_
E—E Real
4000 8000 12000 16000
Processing elements

@ Ground state DFT
- 561 Au atom cluster
- ~6200 electronic states
- Blue Gene P, Argonne

GPRW!

20000¢

15000¢

10000}

Speedup

5000

= |deal
E—l Real

5000 10000 15000 20000
Processing elements

o Real-time TD-DFT
- 702 Si atom cluster
- ~2800 electronic states
- Cray XT5 Jaguar, Oak Ridge

GPRW!

- |deal

2000 4000 6000 8000 10000 12000 14000 16000 18000

Processing elements

v Linear-response TD-DFT
- Au38(SCH3)24 cluster ~160 atoms
- ~680 electronic-hole pairs
- Cray XE6 Hermit, HLRS, Germany

Parallel performance GPRAW]

VASP vs. GPAW

Performance on Sisu
60 I T

o0 50 100 150 200 250

@ Ground state DFT
- Large MgH2 cell, 1296 atoms
- Cray XC30, CSC (node=16 cores)

GPRW!

v k-points have to be distributed evenly
- same number of k-points in each process

v Electronic states have to be distributed evenly
- same number of states in each process

@ |In principle, arbitrary number of processes can be
used for domain decomposition

- recommended to use cubic domainse.g. 4 x4 x4

- recommended to use domain dimensions which
factor the number of grid points

GPRW!

v By default, k-point and spin are distributed first,

and the remaining processors are used for domain
decomposition

v Example: magnetic system, 5 k-points

- with 20 processors: 10 (=2x5) processors for
spin/k-point and 2 processors for domain
decompostion (2x1x1 layout)

- with 24 processors: 2 processors for spin, 12
processors for domain decomposition (3x2x2
layout)

GPRW!

v Electronic state parallelization has to specified
explicitly
aprun -n 512 gpaw-python input.py --state-parallelization=2

— 2 processors for states, 256 to k-points/spin/domains

@ For large calculations (> 1000 states) one more
command line argument:

aprun -n 512 gpaw-python input.py --sl default=4,4,64

- some large matrix diagonalizations are done in
parallel with 16 (=4x4) processes

- 4x4 or 8x8 are typically good values (block size 64
has only small effect)

GPRW!

v Parallelization options can be given also as GPAW
calculator parameters

lcalc = GPAW(...

parallel={kpt :

band :

sl_default :

4,
domain

2

8,

k-point parallelization with 4 MPI tasks

domain decomposition with 8 MPI tasks

band parallelization with 2 MPI tasks
(4,4,64)} # parallel matrix diagonalization

@ Command line arguments precede calculator

parameters

GPRW!

v Often, it is desirable to check system parameters
without an actual calculation

o GPAW offers a dry-run mode

[cscuser@cobol ~]$ python input.py --state-parallelization=2 --dry-run=512

- only unexpensive initializations, can be run serially

- simulates parallel calculations and shows the
parallelization scheme

- estimates the memory usage

	Slide 1
	Practices & practicalities
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

