

111111010101

110101

010101010101010101010

Jussi Enkovaara

CSC – IT Center for Science, Finland

Outline

- Introduction to GPAW
 - Projector-augmented wave method
 - Basis sets in GPAW
- Using Atomic Simulation Environment and GPAW
- Hands-on exercises
- Lunch
- Time-dependent DFT with GPAW
- Parallel calculations (+ other features by request)
- Hands-on exercises

- Implementation of projector augmented wave method on
 - uniform real-space grids, atomic orbital basis, plane waves
- Density-functional theory, time-dependent DFT, many-body perturbation theory, ...
- Massively parallelized

wiki.fysik.dtu.dk/gpaw

gpaw-users@listserv.fysik.dtu.dk

- J. J. Mortensen et al., Phys. Rev. B 71, 035109 (2005)
- J. Enkovaara et al., J. Phys. Condens. Matter 22, 253202 (2010)

GPAW

Open source software licensed under GPL

- 20-30 developers in Europe and USA

The main GPAW references cited ~350 times
 ~300 subscribers in users mailing list

GPAW features

Total energies, forces, structural optimization

- analysis of electronic structure
- Excited states, optical spectra
 - Non-adiabatic electron-ion dynamics
- Wide range of XC-potentials (thanks to libxc!)
 - LDAs, GGAs, meta-GGAs, hybrids, DFT+U, vdW, RPA
- Electron transport
- GW-approximation, Bethe-Salpeter equation

Projector-augmented wave method

- Exact all-electron formalism
- "Pseudopotentials done right"
- Good description over the whole periodic table
- Access to full wave functions and density
- Norm-conserving and ultrasoft pseudopotentials can be derived as approximations to PAW

PAW transformation

Linear transformation from pseudo wave functions to all-electron wave functions

$$|\psi_k\rangle = \widehat{T}|\widetilde{\psi}_k\rangle$$

• Transformation operator $\widehat{T} = 1 + \sum_{a,i} \left(|\phi_i^a\rangle - |\widetilde{\phi}_i^a\rangle \right) \langle \widetilde{p}_i^a \rangle$

- $|\phi^a_i
 angle$ all-electron atomic orbital
- $| ilde{\phi}_{i}^{a}
 angle$ pseudo atomic orbital

 $| \tilde{p}_i^a
angle$ projector function

Core electrons are frozen

Properties of PAW transformation

 $p_i^a(r) = 0, r > R_a$

All-electron orbitals and pseudo orbitals are equal outside the augmentation spheres

 $\phi_i^a(r) = \tilde{\phi}_i^a(r), r > R_a$

Projector functions are orthogonal to pseudo orbitals

$$\langle \tilde{p}_i^a | \tilde{\phi}_j^a \rangle = \delta_{ij}$$

Example: Platinum

PAW transformation

- The projector functions and partial waves are constructed from all-electron calculation for spherical symmetric atom
- To be exact, infinite number of projectors and partial waves is needed
 - In practice, 1-2 functions per angular momentum is enough

One center expansion

Inside augmentation spheres one can define one-center expansions of AE and PS state

$$\psi_n^a(\mathbf{r}) = \sum_i P_{in}^a \phi_i^a(\mathbf{r})$$

 $\tilde{\psi}_n^a(\mathbf{r}) = \sum_i P_{in}^a \tilde{\phi}_i^a(\mathbf{r})$
with expansion coefficients

$$P^a_{in} = \langle \tilde{p}^a_i | \tilde{\psi}_n \rangle$$

All electron wave function can now be written as

$$\psi_n = \tilde{\psi}_n + \sum_{\alpha} (\psi_n^a - \tilde{\psi}_n^a)$$

PAW expectation values

Within frozen core approximation expectation value of operator Ô is

$$\langle \hat{O} \rangle = \sum_{n}^{val} f_n \langle \psi_n | \hat{O} | \psi_n \rangle + \sum_{a} \sum_{\alpha} \langle \phi_\alpha^{a,core} | \hat{O} | \phi_\alpha^{a,core} \rangle$$

By inserting the PAW expression, one obtains for (semi)local operators

$$\langle \psi_n | \hat{O} | \psi_n \rangle = \langle \tilde{\psi}_n | \hat{O} | \tilde{\psi}_n \rangle + \sum_a \left(\langle \psi_n^a | \hat{O} | \psi_n^a \rangle - \langle \tilde{\psi}_n^a | \hat{O} | \tilde{\psi}_n^a \rangle \right)$$

$$= \tilde{O} + \sum_a \left(O^a - \tilde{O}^a \right)$$

$$+ \checkmark -$$

PAW Hamiltonian

PAW Hamiltonian can be written as

$$\hat{H} = -\frac{1}{2}\nabla^2 + \tilde{v}(\mathbf{r}) + \sum_a \sum_{i_1 i_2} |\tilde{p}^a_{i_1}\rangle \Delta H^a_{i_1 i_2} \langle \tilde{p}^a_{i_2}|$$

Pseudo wave functions are orthonormal only with respect to overlap operator

$$\langle \psi_i | \psi_j \rangle = \langle \tilde{\psi}_i | \hat{T}^{\dagger} \hat{T} | \tilde{\psi}_j \rangle = \langle \tilde{\psi}_i | \hat{S} | \tilde{\psi}_j \rangle = \delta_{ij}$$

Generalized eigenvalue equation

$$\hat{H}\tilde{\psi}_n = \epsilon_n \hat{S}\tilde{\psi}_n$$

Approximations in PAW

Finite number of projectors

- typically two projectors per angular momentum are used
- Truncated angular momentum expansions
- Overlapping augmentation spheres
- Frozen core

PAW setup

A set of

 $\phi^a, \, \tilde{\phi}^a, \, \tilde{p}^a, \, n^a_c, \, \tilde{n}^a_c, \, \bar{v}^a$

for a single atom constitutes a PAW setup

- Setups are generated for individual atoms
- The actual PAW calculations use pregenerated setups
- Setup testing is non-trivial and time-consuming
 - correct properties for the particular atom
 - transferability in different molecules and solids

Basis sets in GPAW

Real-space grids

Localized atomic orbital basis

Plane waves

Real-space grids

- Wave functions, electron densities, and potentials are represented on grids.
- Single parameter, grid spacing h

- Accuracy of calculation can be improved systematically
- Derivatives by finite differences

Boundary conditions

- Real-space description allows flexible boundary conditions
- Zero boundary conditions (finite systems)
 - Useful especially in charged systems
- Periodic boundary conditions (bulk systems)
- Boundary conditions can be mixed
 - periodic in one dimension (wires)
 - periodic in two dimensions (surfaces)

Atomic orbital basis

Linear combination of atomic orbitals (LCAO) provide compact basis set

$$\tilde{\psi}_n = \sum_{\nu} C_{n\nu} \Phi_{\nu}(\mathbf{r})$$

$$\Phi^a_{nlm}(\mathbf{r}) = R^a_{nl}(|\mathbf{r} - \mathbf{R}^a|)Y_{lm}(\mathbf{r} - \mathbf{R}^a)$$

- The atomic orbitals are obtained from a free atom in a confining potential well
- Systematic improvement of accuracy is non-trivial
- Possible to switch between localized basis and real-space grids

Plane wave basis

Functions which are periodic with respect to unit cell can be written as sum of plane waves

$$\psi_{n\mathbf{k}}(\mathbf{r}) = \frac{1}{\Omega^{1/2}} \sum_{\mathbf{G}} C_{\mathbf{G},n\mathbf{k}} e^{i(\mathbf{G}+\mathbf{k})\cdot\mathbf{r}}$$

$$n(\mathbf{r}) = \sum_{\mathbf{G}} n_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}} \qquad V(\mathbf{r}) = \sum_{\mathbf{G}} V_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}}$$

- The expansion is truncated according to $\frac{1}{2}|\mathbf{G} + \mathbf{k}|^2 < E_{cutoff}$
- Only periodic cells (supercells)

(+)

(+)

4

 (\mathbf{F})

 (\mathbf{F})

Comparison of basis sets

Real-space grids

- systematic convergence with single parameter
- good parallelization prospects
- some integrals complicated in real-space
- Localized basis set
 - compact basis
 - systematic convergence can be difficult
- Plane waves
 - systematic convergence with single parameter
 - some integrals simplified in reciprocal space
 - very efficient in small to medium size systems
 - parallelization more limited due FFTs

Using the Atomic Simulation Environment

Atomic Simulation Environment

- ASE is a Python package for
 - building atomic structures
 - structure optimization and molecular dynamics
 - analysis and visualization
- ASE relies on external software which provides total energies, forces, etc.
 - GPAW, Abinit, Siesta, Vasp, Castep, ...
- Input files are Python scripts
 - calculations are run as "python input.py"
 - simple format, no knowledge of Python required
 - knowledge of Python enables great flexibility
- Simple graphical user interface

wiki.fysik.dtu.dk/ase

Setting up the atoms

Specifying atomic positions directly

Reading atomic positions from a file

```
...
atoms = read('CH4.xyz')
view(atoms)
```

- Several file formats supported

Setting up the unit cell

By default, the simulation cell of an Atoms object has zero boundary conditions and edge length of 1 Å

Unit cell can be set when constructing Atoms

or later on

atoms = Atoms(...) # positions in relative coordinates atoms.set_cell((2.5, 2.5, 2.5), scale_atoms=True) atoms.set_pbc(True) # or atoms.set_pbc((True, True, True))

atoms = ... atoms.center(vacuum=3.5) # finite system 3.5 Å empty space around atoms

Units in ASE

Easy conversion between units:

from	ase.	units	import	Boł	nr,	Hartre	ee				
a = a	0 *	Bohr	#	a0	in	a.u.,	a	in	Å		
E = E	0 *	Hartre	e <mark>#</mark>	E0	in	Hartre	ee,	, E	in	eV	

- also Rydberg, kcal, nm, ...

Pre-defined molecules and structures

Database of small molecules (G2-1 and G2-2 sets)

<pre>from ase.structure</pre>	import	molecu	le
-------------------------------	--------	--------	----

mol = molecule('C6H6') # coordinates from MP2 calculation
mol.center(3.5) # molecule() returns unit cell of 1 Å

Bulk structures of elemental materials

from ase.lattice import bulk

Supercells and surfaces

Existing Atoms objects can be "repeated" and individual atoms removed

from ase.lattice import bulk

```
atoms = bulk('Si', cubic=True) # cubic 8-atom unit cell
supercell = atoms.repeat((4, 4, 4)) # 512 atom supercell
del supercell[0] # remove first atom, e.g. create a vacancy
```

Utilities for working with surfaces

```
from ase.lattice.surface import fcclll, add_adsorbate
slab = fcclll('Cu', size=(3,3,5)) # 5-layers of 3x3 Cu (111) surface
# add 0 atom 2.5 Å above the surface in the 'bridge' site
add_adsorbate(slab, '0', 2.5, position='bridge')
```

Performing a calculation

In order to do calculation, one has to define a calculator object and attach that to Atoms

```
from ase.structure import molecule  # Setup the atomic simulation environment
from gpaw import GPAW  # Setup GPAW
atoms = molecule('CH4')
atoms.center(3.5)
calc = GPAW() # Use default parameters
atoms.set_calculator(calc)
atoms.get_potential_energy() # Calculate the total energy
```

Specifying calculator parameters

```
calc = GPAW(h=0.18, nbands=6,  # 6 bands and grid spacing of 0.20 Å
    kpts=(4,4,4),  # 4x4x4 Monkhorst-Pack k-mesh
    xc='PBE', txt='out.txt') # PBE and print text output to file
```

See wiki.fysik.dtu.dk/gpaw/documentation/manual.html for all parameters

Performing a calculation

Serial calculations and analysis can be carried out with normal Python interpreter

[jenkovaa@flamingo ~]\$ python input.py

Parallel calculations with gpaw-python executable

#PBS -N gpaw_test
#PBS -1 select=4
#PBS -1 walltime=00:20:00
...
aprun -n 96 gpaw-python input.py

Structural optimization


```
from ase.all import *  # Setup the atomic simulation environment
from gpaw import GPAW  # Setup GPAW
atoms = ...
calc = GPAW(...)
atoms.set_calculator(calc)
opt = BFGS(atoms, trajectory='file.traj') # define an optimizer
opt.run(fmax=0.05) # optimize the structure until forces smaller than 0.05 eV / Å
```

- See wiki.fysik.dtu.dk/ase/ase/optimize.html for supported optimizers
- "Best" optimizer is case-dependent

Simple Python scripting


```
atoms = ...
calc = GPAW(...)
atoms.set_calculator(calc)
```

```
# Check convergence with grid spacing
for h in [0.35, 0.30, 0.25, 0.20, 0.18]:
    txtfile = 'test_h' + str(h) + '.txt'
    calc.set(h=h, txt=txtfile)
    e = atoms.get_potential_energy()
    print h, e
```

```
import numpy as np
atoms = ...
calc = GPAW(...)
atoms.set_calculator(calc)

# lattice constant for different XC-functionals
for xc in ['LDA', 'PBE']:
   for a in np.linspace(3.8, 4.3, 5):
        txtfile = 'test_xc_' + xc + '_a' + str(s) + '.txt'
        atoms.set_cell((a, a, a), scale_atoms=True)
        calc.set(xc=xc, txt=txtfile)
        e = atoms.get potential energy()
```

Saving and restarting

Saving full state of calculation: .gpw-files (or .hdf5-files)

```
...
calc = GPAW(...)
atoms.set_calculator(calc)
atoms.get_potential_energy() # Calculate the total energy
calc.write('myfile.gpw') # Atomic positions, densities, calculator parameters
```

```
calc.write('myfile.gpw', mode='all') # Save also wave functions (larger files)
```

```
calc.write('myfile.hdf5', mode='all') # If GPAW is build with HDF5 support
```

Restarting

```
from ase.all import *  # Setup the atomic simulation environment
from gpaw import restart  # Setup GPAW
atoms, calc = restart('file.gpw')
e0 = atoms.get_potential_energy() # no calculation needed
calc.set(h=0.20)
e1 = atoms.get_potential_energy() # calculation total energy with new grid
```

Saving and restarting

Trajectories: atomic positions, energies, forces

```
...
calc = GPAW(...)
atoms.set_calculator(calc)
traj = PickleTrajectory('file.traj', 'w', atoms) # define a trajectory file
for a in np.linspace(3.8, 4.3, 5):
    txtfile = 'test_xc_' + xc + '_a' + str(s) + '.txt'
    atoms.set_cell((a, a, a), scale_atoms=True)
    atoms.get_potential_energy()
    traj.write() # write cell and energy to trajectory file
```

Reading atomic positions

```
from ase.all import *  # Setup the atomic simulation environment
from gpaw import GPAW  # Setup GPAW
atoms = read('file.traj')  # read the last image
first = read('file.traj', 0) # first image
calc = GPAW(...)
atoms.set calculator(calc)  # calculator has to be attached
```

Simple graphical interface (ase-gui)

Trajectory can be investigated with ase-gui tool

[jenkovaa@flamingo ~]\$ ase-gui file.traj

Investigate how total energy, forces, bond lengths etc. vary during simulation

Exercises

Go to wiki.fysik.dtu.dk/gpaw/exercises/exercises.html and get your hands dirty!

Time-dependent DFT with GPAW

Time-dependent DFT

- Generalization of density-functional theory also to time-dependent cases
- Runge-Gross theorem PRL 52 (1984)
 - one-to-one mapping between the time-dependent potential and the density
- Excited state properties
 - excitation energies, optical spectra, ...
- Time-dependent Kohn-Sham equations

$$i\frac{\partial\psi_i(r,t)}{\partial t} = H\psi_i(r,t)$$
$$H = -\frac{\nabla^2}{2} + V_{eff}(r,t)$$
$$n(r,t) = \sum_i |\psi_i(r,t)|^2$$

Real-time propagation

Direct integration of time-dependent Kohn-Sham equations in time-domain

$$i\frac{\partial\psi_i(r,t)}{\partial t} = H(t)\psi_i(r,t)$$
$$n(r,t) = \sum_i |\psi_i(r,t)|^2$$

Integration is done with Crank-Nicholson type scheme:

$$[1 + iH(t)\Delta t] \psi_i(t + \Delta t) = [1 - iH(t)\Delta t] \psi_i(t)$$

Initial value problem, the starting value $\psi_i(t=0)$ is obtained from ground state calculation

Optical absorption spectra from real-time TDDFT

- Solution Excite the system with delta pulse $E(t) = \epsilon \mathbf{k}^{\mathbf{o}} \delta(t)$
- Wave functions change instantaneously to

 $\psi(t = 0^+) = \exp(i\epsilon \mathbf{k}^{\mathbf{o}} \cdot \mathbf{r}) \psi(t = 0)$

- Time-propagate wave functions and record the time-dependent dipole moment
- Spectra can be obtained via Fourier transform of the time-dependent dipole-moment

Practice

Perform ground state calculation and save the wave functions

from ase.all import * from gpaw import GPAW

```
atoms = ...
atoms.center(5.0) # may need to be larger in real calculations
calc = GPAW(h=0.30)
atoms.set_calculator(calc)
atoms.get_potential_energy()
calc.write('gs.hdf5', mode='all')
```

Time-propagate

from gpaw.tddft import TDDFT

```
time_step = 16.0 # as
iters = 650  # 650 x 16 as 10.4 fs
kick = [0,0,1e-3] # Weak delta kick to z-direction
td_calc = TDDFT('gs.hdf5')
td_calc.absorption_kick(kick)
td_calc.propagate(time_step, iters, 'dmz.dat')
```


Calculate the optical spectra

from gpaw.tddft import photoabsorption_spectrum

photoabsorption_spectrum('dmz.dat', 'spectrum_z.dat', width=0.2)

- Depending on the symmetry of system, separate kick in all x,y,z directions may be needed.
- Normally, the size of simulation box has to be larger than in ground state calculations
- Grid spacing can often be larger than in ground state calculations
- Time-step affects the accuracy of spectra (too large time-step may lead into unstable propagation)
- Total simulation time affects the resolution of spectra.

Grid spacing

Eigenvalues are important, not forces or total energy!

Time step

Total simulation time

Double simulation time => double resolution

Linear response TD-DFT

Small perturbation to ground state potential

 $V_{ext} = V_{ext,0} + \delta V_{ext}(t)$ results a change in density

$$n(r,t) = n_0(r) + n_1(r,t)$$

Within linear response:

$$n_1(r,\omega) = \int d^3r \chi(r,r',\omega) \delta V_{ext}(r',\omega)$$

 \odot TD-DFT:

$$n_1(r,\omega) = \int d^3r \chi_0(r,r',\omega) \delta V_{eff}(r',\omega)$$

The interacting response function can be obtained from the non-interacting one

Response function

Dyson-like equation for density-density response:

$$\begin{aligned} \chi(\mathbf{r},\mathbf{r}',\omega) &= \chi_0(\mathbf{r},\mathbf{r}',\omega) \\ &+ \iint_{\Omega} d\mathbf{r}_1 d\mathbf{r}_2 \ \chi_0(\mathbf{r},\mathbf{r}_1,\omega) K(\mathbf{r}_1,\mathbf{r}_2) \chi(\mathbf{r}_2,\mathbf{r}',\omega) \end{aligned}$$

Non-interacting response function is constructed from ground state Kohn-Sham orbitals

Coupling kernel is: $K(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} + f_{xc}[n](\mathbf{r}_1, \mathbf{r}_2)$ with XC kernel $f_{xc}(r_1, r_2) = \frac{\partial v_{xc}[n](r_1)}{\partial n(r_2)}$

Response function

Non-interacting response function is given by

$$\chi^{0}(\mathbf{r},\mathbf{r}',\omega) = \sum_{\mathbf{k},\mathbf{q}}^{\mathrm{BZ}} \sum_{n,n'} \frac{f_{n\mathbf{k}} - f_{n'\mathbf{k}+\mathbf{q}}}{\omega + \epsilon_{n\mathbf{k}} - \epsilon_{n'\mathbf{k}+\mathbf{q}} + i\eta} \psi^{*}_{n\mathbf{k}}(\mathbf{r})\psi_{n'\mathbf{k}+\mathbf{q}}(\mathbf{r})\psi_{n\mathbf{k}}(\mathbf{r}')\psi^{*}_{n'\mathbf{k}+\mathbf{q}}(\mathbf{r}')$$

- Occupation numbers, eigenvalues and ground state orbitals of occupied and unoccupied states
- In extended systems one solves the Dyson equation in plane wave basis
 - ground state calculation can be done in any basis

Dielectric matrix

Dielectric matrix is related to the interacting response function

$$\epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathbf{G}\mathbf{G}'} + \frac{4\pi}{|\mathbf{q}+\mathbf{G}|^2}\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$$

Macroscopic dielectric function

$$\epsilon_M(\mathbf{q},\omega) = \frac{1}{\epsilon_{00}^{-1}(\mathbf{q},\omega)}$$

Optical spectra

$$ABS = Im\epsilon_M(\mathbf{q} \to 0, \omega)$$

Electron-energy loss spectra $EELS = -Im \frac{1}{\epsilon_M(\mathbf{q}, \omega)}$

Excitation energies in finite systems

Excitation energies can be calculated from eigenvalue equation:

$$\mathbf{\Omega}F_I = \omega_I^2 F_I,$$

where

$$\Omega_{ij\sigma,kl\tau} = \delta_{ik}\delta_{jl}\delta_{\sigma\tau}\varepsilon_{ij\sigma}^2 + 2\sqrt{\varepsilon_{ij\sigma}\varepsilon_{kl\tau}}K_{ij\sigma,kl\tau},$$
$$\varepsilon_{ij} = \varepsilon_i - \varepsilon_j$$

with the coupling kernel

$$K_{ij\sigma,kl\tau} = \int dr_1 dr_2 n_{ij\sigma}^*(r_1) \left[\frac{1}{|r_1 - r_2|} + f_{xc}(r_1, r_2) \right] n_{kl\tau}(r_2)$$
$$n_{ij\sigma}(r) = \psi_{i\sigma}(r)^* \psi_{j\sigma}(r)$$

i and j indexes go through occupied and unoccupied states, respectively

Optical spectra in finite systems

Dipole oscillator strengths of excitations can be calculated from the eigenvectors

$$f_{I\alpha} = \left| \sum_{ij\sigma} \langle \psi_{i\sigma} | r_{\alpha} | \psi_{j\sigma} \rangle \sqrt{\varepsilon_{ij\sigma}} F_I \right|^2$$

Spectra with finite peak widths are obtained by folding the oscillators strengths e.g. with Gaussian

$$S_{\alpha}(\omega) = \sum_{I} f_{I\alpha} g(\omega - \omega_{I})$$

Practice

Perform ground state calculation and include also unoccupied states

```
from ase.all import *
                                   # Setup the atomic simulation environment
from qpaw import GPAW
                                   # Setup GPAW
                                   # Conjugate gradient eigensolver
from gpaw.eigensolvers import CG
atoms = \ldots
atoms.center(vacuum=5.0) # More vacuum might be needed in reality
calc = GPAW(nbands=1, h=0.30, txt='Na2 gs.txt')
atoms.set calculator(calc)
e = atoms.get potential energy()
# Calculate also unoccupied states with the fixed density
eig = CG() # unoccupied states converge often better with cg
calc.set(nbands=20, convergence={'bands': 'all'}, # converge unoccupied states
         eigensolver=eig,
         fixdensity=True)
e = atoms.get potential energy()
# write the wave functions to a file
calc.write('na2 gs.gpw', 'all')
```


Calculate Ω matrix

```
from gpaw import * # Setup GPAW
from gpaw.lrtddft import *
atoms, calc = restart('na2_gs.gpw') # read in a ground state calculation
# Calculate the omega matrix
lr = LrTDDFT(calc, xc='LDA')
# Save the omega matrix
lr.write('Omega_Na2.gz')
```

Diagonalization can be performed in separate step

```
from gpaw.lrtddft import *
# Read the omega matrix from a file
lr = LrTDDFT(filename='Omega_Na2.gz')
# Diagonalize the matrix
lr.diagonalize()
# Print out five lowest excitations
lr.analyse(range(5))
# Calculate the absorption spectrum and save it to a file
photoabsorption_spctrum(lr, 'Na2_spectrum.dat', e_min=0.0, e_max=10, width=0.1)
```


- In addition to the box size and grid spacing, accuracy is controlled by the number of electron-hole pairs
- The computational intensity of the calculation is O(N_{eh}³)
- The size of electron-hole basis can be reduced:

first occupied state to consider
last unoccupied state to consider

The proper number of eh-pairs is very system dependent

Real-time vs. linear response

Real-time

- only excitations corresponding to given perturbation
- non-linear effects
- scales O(N²) with the system size, large prefactor
- time step controls the accuracy relatively straightforwardly

Linear response

- all excitations (within linear response)
- scales O(N⁶) with the system size, small prefactor
- control of accuracy by the electron-hole basis size can be complex

Parallel calculations with GPAW

Parallelization levels

$$H_{\mathbf{k},s}\psi_{i,\mathbf{k},s}(r) = e_i S\psi_{i,\mathbf{k},s}(r)$$
$$i\partial_t \psi_{i,s}(r,t) = H_s \psi_{i,s}(r,t)$$
$$n(r) = \sum_{i,\mathbf{k},s} |\psi_{i,\mathbf{k},s}(r)|^2$$

- Parallelization over all degrees of freedom
 - real-space grid
 - k-points and spin
 - electronic states
- Additional trivial parallelizations possible
 - Electron-hole pairs
 - different atomic configurations or unit cells

Parallelization over k-points and spin

$$H_{\mathbf{k},\mathbf{s}}\psi_{i,\mathbf{k},\mathbf{s}}(r) = e_i\psi_{i,\mathbf{k},\mathbf{s}}(r)$$
$$n(r) = \sum_{i,\mathbf{k},\mathbf{s}} |\psi_{i,\mathbf{k},\mathbf{s}}(r)|^2$$

- Spin and k-points are treated equivalently
- Trivial parallelization
- Limited scalability
 - k-points only in (small) periodic systems
 - spin only in magnetic systems

All basis sets

Parallelization over real-space grid

Domain decomposition

Only local communication

- Good parallel scalability down to domain sizes ~16 x 16 x 16
- Not available in plane wave mode

Parallelization over electronic states

$$H_{k,s}\psi_{\mathbf{i},k,s}(r) = e_{\mathbf{i}}\psi_{\mathbf{i},k,s}(r)$$
$$n(r) = \sum_{\mathbf{i},k,s} |\psi_{\mathbf{i},k,s}(r)|^2$$

Nearly trivial parallelization in real-time TDDFT

- (similar to k-points)
- good scalability down to 20 states per process
- Orthonormalizations are complicated in ground state DFT
 - communication of all wave functions to all processes
 - parallel scalability down to 150-250 states per process
 - all basis sets

Parallelization over electron-hole pairs

Casida equation in linear response TD-DFT:

$$\mathbf{\Omega}F_I = \omega_I^2 F_I,$$

$$\Omega_{ij\sigma,kl\tau} = \delta_{ik}\delta_{jl}\delta_{\sigma\tau}\varepsilon_{ij\sigma}^2 + 2\sqrt{\varepsilon_{ij\sigma}\varepsilon_{kl\tau}}K_{ij\sigma,kl\tau}$$

- Matrix elements can be calculated independently
- Nearly trivial parallelization over electron-hole pairs ij
- Domain decomposition for individual matrix elements

Parallel scalability

Ground state DFT

- 561 Au atom cluster
- ~6200 electronic states
- Blue Gene P, Argonne

Parallel scalability

Real-time TD-DFT

- 702 Si atom cluster
- ~2800 electronic states
- Cray XT5 Jaguar, Oak Ridge

Parallel scalability

Linear-response TD-DFT

- Au38(SCH3)24 cluster ~160 atoms
- ~680 electronic-hole pairs
- Cray XE6 Hermit, HLRS, Germany

Parallel performance

Ground state DFT

- Large MgH2 cell, 1296 atoms
- Cray XC30, CSC (node=16 cores)

k-points have to be distributed evenly

- same number of k-points in each process
- Electronic states have to be distributed evenly
 - same number of states in each process
- In principle, arbitrary number of processes can be used for domain decomposition
 - recommended to use cubic domains e.g. 4 x 4 x 4
 - recommended to use domain dimensions which factor the number of grid points

- By default, k-point and spin are distributed first, and the remaining processors are used for domain decomposition
- Example: magnetic system, 5 k-points
 - with 20 processors: 10 (=2x5) processors for spin/k-point and 2 processors for domain decompostion (2x1x1 layout)
 - with 24 processors: 2 processors for spin, 12 processors for domain decomposition (3x2x2 layout)

Electronic state parallelization has to specified explicitly

aprun -n 512 gpaw-python input.py --state-parallelization=2

- 2 processors for states, 256 to k-points/spin/domains
- For large calculations (> 1000 states) one more command line argument:

aprun -n 512 gpaw-python input.py --sl_default=4,4,64

- some large matrix diagonalizations are done in parallel with 16 (=4x4) processes
- 4x4 or 8x8 are typically good values (block size 64 has only small effect)

Parallelization options can be given also as GPAW calculator parameters

Command line arguments precede calculator parameters

"dry-run" mode

Often, it is desirable to check system parameters without an actual calculation

GPAW offers a dry-run mode

[cscuser@cobol ~]\$ python input.py --state-parallelization=2 --dry-run=512

- only unexpensive initializations, can be run serially
- simulates parallel calculations and shows the parallelization scheme
- estimates the memory usage