QM/MM approaches in *ab initio* molecular dynamics

Marcella Iannuzzi University of Zurich

Teodoro Laino IBM Zurich Research Laboratory

Outline

- Overview of the QM/MM methodology
- Available QM/MM Electrostatic
 Schemes
- GEEP: CP2K QM/MM driver
- Charged Oxygen Vacancies in SiO2

Nobel Prize in Chemistry 2013

Martin Karplus, Harvard U., Cambridge, MA, USA Micheal Levitt, Stanford U., Stanford, CA, USA Arieh Warshel, U. Southern Ca., Los Angeles, CA, USA **Development of Multiscale Models of Complex Chemical Systems**

Combine QM and MM

full atomistic by classical FF

 $V(\mathbf{R}) = V_{\rm QM}(\mathbf{R}) + V_{\rm MM}(\mathbf{R}) + V_{\rm int}(\mathbf{R})$

QMMM: overview

P.D. Blood and G.A. Voth, *PNAS*, 103, **2006**, pp. 15068-15072

QMMM: overview

QMMM:overview

QMMM: overview

0.11 million atoms 5 QM regions: effects of O implantation into Si adaptive QM regions

simoX technology

Yoshio Tanaka (AIST) and Aiichiro Nakano (USC)

QMMM: overview

$$E_{QM/MM} = \int d\vec{r} \rho_{tot}^{QM}(\vec{r}) \cdot V^{MM}(\vec{r})$$

Computing $V^{MM}(\vec{r})$ on the same cell on which is defined $\rho_{tot}^{QM}(\vec{r})$

T. Laino et al, J. Chem. Theory Comput., 1, 2005, pp. 1176-1184 T. Laino et al, J. Chem. Theory Comput., 2, 2006, pp. 1370-1378

Outline

- Overview of the QM/MM methodology
- Available QM/MM Electrostatic
 Schemes
- GEEP: CP2K QM/MM driver
- Charged Oxygen Vacancies in SiO2

Available QM/MM Electrostatic Schemes

 $Cost \approx N_{MM} * P^1$

GEEP

Application: cOVD

Available QM/MM Electrostatic Schemes

Spherical Cutoff Cost $\approx N_{MM}^{c} * P^{1}$

Available QM/MM Electrostatic Schemes

A. Laio, J. VandeVondele, U. Rothlisberger , J. Chem. Phys., 116, 2002, pp. 6941

Outline

- Overview of the QM/MM methodology
- Available QM/MM Electrostatic
 Schemes
- GEEP: CP2K QM/MM driver
- Charged Oxygen Vacancies in SiO2

QM/MM

Gaussian charge distribution

$$n(\mathbf{r}, \mathbf{R}_{\mathrm{MM}}) = \left(\frac{r_{c,\mathrm{MM}}}{\sqrt{\pi}}\right)^3 e^{-(|\mathbf{r}-\mathbf{R}_{\mathrm{MM}}|/r_{c,\mathrm{MM}})^2}$$

$$v_{\mathrm{MM}}(\mathbf{r}, \mathbf{R}_{\mathrm{MM}}) = rac{\mathrm{Erf}\left(rac{|\mathbf{r} - \mathbf{R}_{\mathrm{MM}}|}{r_{c,\mathrm{MM}}}
ight)}{|\mathbf{r} - \mathbf{R}_{\mathrm{MM}}|}$$

prevent spill out problem accelerate calculations of electrostatics

GEEP

$$\frac{\operatorname{Erf}(\frac{r}{r_c})}{r} = \sum_{N_g} A_g \, \exp^{-\left(\frac{r}{G_g}\right)^2} + R_{low}(r)$$

$$rac{\mathrm{Erf}(rac{r}{r_c})}{r}$$

T. Laino, F. Mohamed, A. Laio and M. Parrinello, J. Chem. Th. Comp., 1, 2005, pp. 1176-1184

Multigrid Framework

$$\frac{\operatorname{Erf}(\frac{r}{r_c})}{r} = \sum_{N_g} A_g \, \exp^{-\left(\frac{r}{G_g}\right)^2} + R_{low}(r)$$

Collocation in the QM Box

 $E_{\rm QM/MM}(\mathbf{R}_{\rm QM}, \mathbf{R}_{\rm MM}) = \int n(\mathbf{r}, \mathbf{R}_{\rm QM}) V^{\rm QM/MM}(\mathbf{r}, \mathbf{R}_{\rm MM}) d\mathbf{r}$

potential on the finest QM grid

compact Gaussian functions

Scaling ~ Nc^3

()

()

Electrostatic Potential

&QMMM

&CELL ABC 6.0 6.0 6.0 &END CELL USE_GEEP_LIB 9 ECOUPL GAUSS

&MM_KIND H RADIUS 0.44 &END MM_KIND &MM_KIND 0 RADIUS 0.78 &END MM_KIND

&QM_KIND H MM_INDEX 8 9 &END QM_KIND &QM_KIND 0 MM_INDEX 7 &END QM_KIND

&END QMMM

Extension to PBC

How to handle the electrostatic potential in presence of periodic boundary conditions (PBC)?

Ewald Summation scheme:

$$V(\vec{r}) = \sum_{MM} q_{MM} \frac{1}{|\vec{r} - \vec{r}_{MM}|}_{\vec{k} \cdot \vec{r}}$$

$$V_{rec}(\vec{r}) = \frac{4\pi}{\Omega} \sum_{\vec{k} \neq \pm} \sum_{MM} q_{MM} \frac{1}{|\vec{r} - \vec{r}_{MM}|}_{q_{MM}} \text{Reciprocal space}$$

$$V_{real}(\vec{r}) = \sum_{MM} \sum_{\vec{n}} V_{rec}(\vec{r}) \frac{1}{|\vec{r} + \vec{n}|} \frac{V_{real}(\vec{r}) + \vec{n}|}{|\vec{r} - \vec{r}_{MM}|}$$
Real space

QM/MM fully periodic

Total ES Energy

$$n(\mathbf{r}) = n^{\text{QM}}(\mathbf{r}) + n^{\text{MM}}(\mathbf{r}) \pm n^{B}$$

background charge

$$E^{\text{TOT}} = \frac{1}{2} \int \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$E^{\mathrm{MM}} = \frac{1}{2} \int \int d\mathbf{r} d\mathbf{r}' \frac{(n^{\mathrm{MM}}(\mathbf{r}) + n^{B,\mathrm{MM}})(n^{\mathrm{MM}}(\mathbf{r}') + n^{B,\mathrm{MM}})}{|\mathbf{r} - \mathbf{r}'|}$$
$$E^{\mathrm{QM}} = \frac{1}{2} \int \int d\mathbf{r} d\mathbf{r}' \frac{(n^{\mathrm{QM}}(\mathbf{r}) + n^{B,\mathrm{QM}})(n^{\mathrm{QM}}(\mathbf{r}') + n^{B,\mathrm{QM}})}{|\mathbf{r} - \mathbf{r}'|}$$

$$E^{\mathrm{QM/MM}} = \int \int d\mathbf{r} d\mathbf{r}' \frac{(n^{\mathrm{QM}}(\mathbf{r}) + n^{B,\mathrm{QM}})(n^{\mathrm{MM}}(\mathbf{r}') + n^{B,\mathrm{MM}})}{|\mathbf{r} - \mathbf{r}'|}$$

MM/MM fully periodic

QM/MM fully periodic

GEEP with PBC

$$\frac{\operatorname{Erf}(\frac{r}{r_c})}{r} = \sum_{N_g} A_g \, \exp^{-\left(\frac{r}{G_g}\right)^2} + R_{low}(r)$$

$$V(r)_{real} = \sum_{N_g} A_g \, \exp^{-\left(\frac{r}{G_g}\right)^2}$$

QM/MM real space term

QM/MM reciprocal space term

$$V(r)_{rec} = \frac{1}{\Omega} \sum_{k}^{k_{cut}} \tilde{R}_{low}(k) e^{i\vec{k}\cdot\vec{r}}$$

$$\tilde{R}_{low}(k) = \begin{bmatrix} \frac{4\pi}{|\vec{k}|^2} \end{bmatrix} e^{-\frac{|\vec{k}|^2 r_c^2}{4}} - \sum_{N_g} A_g(\pi)^{\frac{3}{2}} G_g^3 e^{-\frac{|\vec{k}|^2 G_g^2}{4}}$$

low cutoff function only few k vectors needed

&QMMM

&CELL ABC 17.320500 17.320500 17.320500 &END CELL

ECOUPL GAUSS USE_GEEP_LIB 6

&MM_KIND NA RADIUS 1.5875316249000 &END MM_KIND &MM_KIND CL RADIUS 1.5875316249000 &END MM_KIND

&PERIODIC GMAX 0.5 &MULTIPOLE EWALD_PRECISION 0.00000001 RCUT 8.0 ANALYTICAL_GTERM &END MULTIPOLE &END PERIODIC

&END QMMM

GEEP Summary

- GEEP is a technique to speed up the evaluation of a function on a grid
- The speed up factor is ~ $(Nf/Nc)^3 = 2^{3(Ngrid-1)}$
- Usually 3-4 grid levels are used corresponding to a speed up of 64-512 ~ 10² times faster than the simple collocation algorithm (Interpolations and Restrictions account for a negligible amount of time)

GEEP Summary

Since the residual function is different from zero only for few k vectors, the sum in reciprocal space is restrained to few points.

Small computational overhead between the fully periodic and non-periodic

Sources of Errors

- Cutoff of grid level appropriate to the cutoff of the mapped Gaussian (~ 20-25 points per linear direction)
- Error in Cubic Spline interpolation
- Cutoff of the coarse grid level comparable to the cutoff of the long range function.

QM fully periodic

QM fully periodic

De-coupling and re-coupling

Bloechl Scheme

Density fitting in g-space of the total density

$$\hat{m}(\mathbf{r}, \mathbf{R}_{\text{QM}}) = \sum_{\text{QM}} q_{\text{QM}} g_{\text{QM}}(\mathbf{r}, \mathbf{R}_{\text{QM}})$$

• Reproduce the correct Long-Range electrostatics $\Delta Q_{l} = \left| \int d\mathbf{r} \, \mathbf{r}^{l} \mathcal{Y}_{l} \left(n(\mathbf{r}, \mathbf{R}_{QM}) - \hat{n}(\mathbf{r}, \mathbf{R}_{QM}) \right) \right|$ $\Delta W = \left| \int d\mathbf{r} \, \mathbf{r}^{2} \left(n(\mathbf{r}, \mathbf{R}_{QM}) - \hat{n}(\mathbf{r}, \mathbf{R}_{QM}) \right) \right|$ minimise

Decoupling and Recoupling using these charges

P. E. Bloechl, J. Chem. Phys., 103 (17), 1995, pp.7422-7428
T. Laino, F. Mohamed, A. Laio and M. Parrinello, J. Chem. Th. Comp., 2 (5), 2006, pp.1370-1378

Charged OV

Migration of charged oxygen vacancy defects in silica

dimer deloc. el.

E₁*

T. Laino, D. Donadio, I-Feng W. Kuo, Phys. Rev. B, 2007

NEB: Minimum Energy Path

T. Laino, D. Donadio, I-Feng W. Kuo, Phys. Rev. B, 2007

Image Charge & QMMM

QM molecule + EAM metal

nitrobenzene/Au(111)

$$\rho_{\rm IC}(\mathbf{r}) = \sum_{I_{\rm met}} C_{I_{\rm met}} \exp\left[-\alpha |\mathbf{r} - \mathbf{R}_{I_{\rm met}}|^2\right]$$

$$V_H(\mathbf{r}) + V_{\rm IC}(\mathbf{r}) = \int \frac{\rho(\mathbf{r}') + \rho_{\rm IC}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' = V_0$$

IC induce polarization, solved selfconsistently

Siepmann Sprik., JCP (1995) **102** Golze Iannuzzi Passerone Hutter, JCTC (2013)

IC distribution

$$\int \left(V_H(\mathbf{r}) + V_{\rm IC}(\mathbf{r}) - V_0\right) g_I(\mathbf{r}) = \int \left(V_H(\mathbf{r}) - V_0\right) g_I(\mathbf{r}) + \sum_J C_J \int \int \frac{g_J(\mathbf{r}')g_I(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

linear set of eq. (CG iterative scheme)

H₂O cluster on Pt(111)

H₂O QM, Pt EAM, H₂O-Pt Siepmann-Sprik + IC

	1 H ₂ O		$2H_2O$			12H ₂ O		
kJ/mol	E _{int}	Eads	E _{int}	Eads	E _{H-bond}	E _{int}	Eads	E _{H-bond}
QM/MM	-41.6	-37.3	-40.9	-49.2	-10.6	-36.4	-61.9	-26.0
IC-QM/MM	-44.2	-43.6	-43.7	-52.9	-10.5	-42.8	-66.6	-24.4
full DFT	-44.9	-43.5	-50.6	-56.8	-7.0	-44.2	-63.0	-19.7

Liquid Water at Pt(111)

honeycomb arrangement 70% on-top site occupied

H-bond distribution

