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CP2K overview
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 Fortran95, 1’000’000 lines of code, rapid development 

 Freely available, open source, GNU General Public License  

 Community Developers Platform (UZH, IBM Research, ETHZ, PNL, LLNL, PSI, U Bochum, 
EPCC UK, .....) 

 User community through Google groups 

 MPI and OpenMP parallelization, CUDA C extensions : porting on >100’000 cores and to GPUs 

 Quality control: automatic regression and memory leak (>2000) 

 Force Methods: KS/OF DFT (vdw), Hybrid, MP2, RPA, Classical Force Fields, QM/MM, DFTB, 
semi-empirical, mixed 

 Sampling Methods: GeoOpt, CellOpt, Molecular Dynamics, Ehrenfest MD, FES and PES tools 
(Metadynamics), Monte Carlo, PIMD 

 Properties and spectroscopy (vibrational, IR,TDDFT, NMR, EPR, NEXAFS, Raman...) 

 External Library:  Lapack/BLAS, ScaLapack/BLACS, MPI, OpenMP, FFTW, libint, libxc, ELPA 

 Internal library for handling sparse matrices (DBCSR)



Outline
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 Gaussian and Plane Wave method (GPW) 

 Basis sets and pseudo potentials 

 Gaussian Augmented Plane Wave method (GAPW) 

 Orbital Transformations (OT) 

 Diagonalisation and Mixing 

 Metals 

 Born-Oppenheimer Molecular Dynamics  

 Stability and efficiency

Ground state KS-DFT and ab initio MD



DFT
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System size {Nel, M}, P [MxM], C [MxN]

KS total energy

Variational 
principle 

Constrained 
minimization 

problem

K(C)C = T(C) + Vext(C) + EH(C) + Exc(C) = SC�

Matrix formulation of the Schrödinger equations

Kohn-Sham formalism: matrix formulation when the wavefunction is expanded into a basis

n(r) =
�

i

�

�⇥

fiC�iC⇥i��(r)�⇥(r) =
�

�⇥

P�⇥��(r)�⇥(r)

⇥i(r) =
�

�

C�i��(r)

P = PSP

E[{�i}] = T [{�i}] + Eext[n] + EH[n] + EXC[n] + EII



Critical Tasks
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O(N) scaling in basis set size

Big systems:  biomolecules, interfaces, material science   
1000+ atoms 

!
Long time scale: 1 ps = 1000 MD steps, processes  

 several ps a day

Introduction
Energy minimization and sparseness function

Time reversible BOMD
Summary

Why are O(N) methods so important?

With conventional SCF methods, hardware improvements bring
only small gains in capability due to the steep scaling of
computational time with system size, N.

Valéry Weber

Construction of the Kohn-Sham matrix 

Hartree potential 

XC potential 

HF/exact exchange 
!

Fast and robust minimisation of the 
energy functional 

!
Efficient calculation of the density matrix 
and construction of the MOs (C)



GPW Ingredients
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 Gaussian basis sets (many terms analytic) 
!
!
!
 Pseudo potentials 
!
 Plane waves auxiliary basis for Coulomb integrals  
!
 Regular grids and FFT for the density 
!
 Sparse matrices (KS and P) 
!
 Efficient screening

⇥i(r) =
�

�

C�i��(r) �↵(r) =
X

m

dm↵gm(r)
gm(r) = x

m
x

y

m
y

z

m
z

e

�↵
m

r2

linear scaling KS matrix computation for GGA

G. Lippert et al, Molecular Physics, 92, 477, 1997 
J. VandeVondele et al, Comp. Phys. Comm.,167 (2), 103, 2005



Gaussian Basis Set
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CP2K: Ab initio Molecular Dynamics Simulations Towards Linear Scaling HF/Exact Exchange Summary Acknowledgment

Sparse Matrices

• Operator matrices are rather sparse

HIV-1 Protease-DMP323 complex in solution (3200 atoms)

• Orbital matrices are invariant under unitary transformation

Chemical localization: Boys, Edminston-Rudenberg, etc.

Mathematical localization

Operator matrices are sparse

 Localised, atom-position dependent GTO basis 

�µ(r) =
�

m

dmµgm(r) gm(r) = xmxymyzmze��mr2

 Expansion of the density using the density matrix

n(r) =
�

µ�

Pµ��µ(r)��
�(r)

  

Gaussian basis: 
The sparsity of H and S

Sαβ=∫ϕα(r)ϕβ(r )dr

Hαβ=∫ϕα(r )v(r)ϕβ(r)dr

The overlap (integral of the product) rapidly 
decays with the spatial separation of the basis 
functions.

ϕα(r) ϕβ(r)

Sαβ

The sparsity pattern of S and H 
depends on the basis and the 
spatial location of the atoms, but not 
on the chemical properties of the 
system in GGA DFT.

Sµ⌫ =

Z
'µ(r)'⌫(r)dr

Hµ⌫ =

Z
'µ(r)V (r)'⌫(r)dr



Basis Set library
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GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS
 O  SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q6	


 1	


 2 0 1 7 1 1	


     12.015954705512 -0.060190841200  0.036543638800	


      5.108150287385 -0.129597923300  0.120927648700	


      2.048398039874  0.118175889400  0.251093670300	


      0.832381575582  0.462964485000  0.352639910300	


      0.352316246455  0.450353782600  0.294708645200	


      0.142977330880  0.092715833600  0.173039869300	


      0.046760918300 -0.000255945800  0.009726110600	


#	


 O  DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q6	


 1	


 2 0 2 7 2 2 1	


     12.015954705512 -0.060190841200  0.065738617900  0.036543638800 -0.034210557400  0.014807054400	


      5.108150287385 -0.129597923300  0.110885902200  0.120927648700 -0.120619770900  0.068186159300	


      2.048398039874  0.118175889400 -0.053732406400  0.251093670300 -0.213719464600  0.290576499200	


      0.832381575582  0.462964485000 -0.572670666200  0.352639910300 -0.473674858400  1.063344189500	


      0.352316246455  0.450353782600  0.186760006700  0.294708645200  0.484848376400  0.307656114200	


      0.142977330880  0.092715833600  0.387201458600  0.173039869300  0.717465919700  0.318346834400	


      0.046760918300 -0.000255945800  0.003825849600  0.009726110600  0.032498979400 -0.005771736600	


#	


 O  TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q6	


 1	


 2 0 2 7 3 3 1	


     12.015954705512 -0.060190841200  0.065738617900  0.041006765400  0.036543638800 -0.034210557400 -0.000592640200  0.014807054400	


      5.108150287385 -0.129597923300  0.110885902200  0.080644802300  0.120927648700 -0.120619770900  0.009852349400  0.068186159300	


      2.048398039874  0.118175889400 -0.053732406400 -0.067639801700  0.251093670300 -0.213719464600  0.001286509800  0.290576499200	


      0.832381575582  0.462964485000 -0.572670666200 -0.435078312800  0.352639910300 -0.473674858400 -0.021872639500  1.063344189500	


      0.352316246455  0.450353782600  0.186760006700  0.722792798300  0.294708645200  0.484848376400  0.530504764700  0.307656114200	


      0.142977330880  0.092715833600  0.387201458600 -0.521378340700  0.173039869300  0.717465919700 -0.436184043700  0.318346834400	


      0.046760918300 -0.000255945800  0.003825849600  0.175643142900  0.009726110600  0.032498979400  0.073329259500 -0.005771736600

 O SZV-GTH	


  1	


  2  0  1  4  1  1	


        8.3043855492   0.1510165999  -0.0995679273	


        2.4579484191  -0.0393195364  -0.3011422449	


        0.7597373434  -0.6971724029  -0.4750857083	


        0.2136388632  -0.3841133622  -0.3798777957	


#	


O DZVP-GTH	


  2	


  2  0  1  4  2  2	


        8.3043855492   0.1510165999   0.0000000000  -0.0995679273   0.0000000000	


        2.4579484191  -0.0393195364   0.0000000000  -0.3011422449   0.0000000000	


        0.7597373434  -0.6971724029   0.0000000000  -0.4750857083   0.0000000000	


        0.2136388632  -0.3841133622   1.0000000000  -0.3798777957   1.0000000000	


  3  2  2  1  1	


        1.1850000000   1.0000000000	


#	


O TZVP-GTH	


  2	


  2  0  1  5  3  3	


       10.2674419938   0.0989598460   0.0000000000   0.0000000000  -0.0595856940   0.0000000000   0.0000000000	


        3.7480495696   0.1041178339   0.0000000000   0.0000000000  -0.1875649045   0.0000000000   0.0000000000	


        1.3308337704  -0.3808255700   0.0000000000   0.0000000000  -0.3700707718   0.0000000000   0.0000000000	


        0.4556802254  -0.6232449802   1.0000000000   0.0000000000  -0.4204922615   1.0000000000   0.0000000000	


        0.1462920596  -0.1677863491   0.0000000000   1.0000000000  -0.2313901687   0.0000000000   1.0000000000	


  3  2  2  1  1	


        1.1850000000   1.0000000000

  O  6-31Gx 6-31G*	


  4	


  1  0  0  6  1	


       5484.67170000          0.00183110	


        825.23495000          0.01395010	


        188.04696000          0.06844510	


         52.96450000          0.23271430	


         16.89757000          0.47019300	


          5.79963530          0.35852090	


  1  0  1  3  1  1	


         15.53961600         -0.11077750          0.07087430	


          3.59993360         -0.14802630          0.33975280	


          1.01376180          1.13076700          0.72715860	


  1  0  1  1  1  1	


          0.27000580          1.00000000          1.00000000	


  1  2  2  1  1	


          0.80000000          1.00000000	


#	


O  6-31Gxx 6-31G**	


  4	


  1  0  0  6  1	


       5484.67170000          0.00183110	


        825.23495000          0.01395010	


        188.04696000          0.06844510	


         52.96450000          0.23271430	


         16.89757000          0.47019300	


          5.79963530          0.35852090	


  1  0  1  3  1  1	


         15.53961600         -0.11077750          0.07087430	


          3.59993360         -0.14802630          0.33975280	


          1.01376180          1.13076700          0.72715860	


  1  0  1  1  1  1	


          0.27000580          1.00000000          1.00000000	


  1  2  2  1  1	


          0.80000000          1.00000000	



  O  6-311++G3df3pd    6-311++G(3df,3pd)	


  9	


  1  0  0  6  1	


       8588.50000000          0.00189515	


       1297.23000000          0.01438590	


        299.29600000          0.07073200	


         87.37710000          0.24000100	


         25.67890000          0.59479700	


          3.74004000          0.28080200	


  1  0  1  3  1  1	


         42.11750000          0.11388900          0.03651140	


          9.62837000          0.92081100          0.23715300	


          2.85332000         -0.00327447          0.81970200	


  1  0  1  1  1  1	


          0.90566100          1.00000000          1.00000000	


  1  0  1  1  1  1	


          0.25561100          1.00000000          1.00000000	


  1  2  2  1  1	


          5.16000000          1.00000000	


  1  2  2  1  1	


          1.29200000          1.00000000	


  1  2  2  1  1	


          0.32250000          1.00000000	


  1  3  3  1  1	


          1.40000000          1.00000000	


  1  0  1  1  1  1	


          0.08450000          1.00000000          1.00000000



Pseudopotentials
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 Norm-conserving, separable, dual-space GTH 
!
 Local PP : short-range and long-range terms

Accurate and 
Transferable 

!
Scalar 

relativistic 
!

Few parameters

V PP
loc (r) =

4⇧

i=1

CPP
i

⇤⌃
(2)�PPr

⌅(2i�2)
e�(�PPr)2

� Zion

r
erf

�
�PPr

⇥

 Non-Local PP with Gaussian type projectors

analytically part of ES

�
r | plm

i

⇥
= N l

i Y lm(r̂) r(l+2i�2) e
� 1

2

“
r
rl

”2

Goedeker, Teter, Hutter, PRB 54 (1996), 1703; 
Hartwigsen, Goedeker, Hutter, PRB 58 (1998) 3641

V PP
nl (r, r0) =

X

lm

X

ij

hr|plmi ihl
ijhplmj |r0i



PP Library
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GTH_POTENTIALS

Nel(s) Nel(p) Nel(d) ...

rPP
loc NC CPP

1 ... CPP
NC

Np

r1 n1
nl {h1

ij}ij=1...n1

r2 n2 {h2
ij}ij=1...n2

C GTH-BLYP-q4	


    2    2	


     0.33806609    2    -9.13626871     1.42925956	


    2	


     0.30232223    1     9.66551228	


     0.28637912    0	


#	


N GTH-BLYP-q5	


    2    3	


     0.28287094    2   -12.73646720     1.95107926	


    2	


     0.25523449    1    13.67893172	


     0.24313253    0	



Few parameters

#	


Al GTH-PBE-q3	


    2    1	


     0.45000000    1    -7.55476126	


    2	


     0.48743529    2     6.95993832    -1.88883584	


                                        2.43847659	


     0.56218949    1     1.86529857



Electrostatic Energy
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ntot(r) = n(r) +
�

A

nA(r)

nA(r) = � ZA

(rc
A)3

��3/2 e

„
r�RA

rc
A

«

V A
core(r) = � ZA

|r�RA|erf
�

|r�RA|
rc
A

⇥

total charge distribution 
including n(r) and Z

rc
A =

�
2 rPP

locA
cancels the long range term of local PP

EES =
⌅

V SR
loc (r)n(r) +

⌅ ⌅
ntot(r)ntot(r�)

|r� r�| drdr�

+
1
2

⇤

A ⇥=B

ZAZB

|RA �RB |erfc
�

|RA �RB⇧
(rc

A)2 + (rc
B)2

⇥
�

⇤

A

1⇥
2�

Z2
A

rc
A

EH[ntot] long range 
smooth

Eov short range, pair Eself

1
2

E
ES

=

Z
V PP

loc

(r)n(r)dr+ 2⇡⌦
X

G

ñ⇤(G)ñ(G)

G2

+
1

2

X

A 6=B

ZAZB

|RA �RB |

Periodic system



Auxiliary Basis Set
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Long range term : Non-local Hartree potential 

!

!

!

Orthogonal, unbiased, naturally periodic PW basis

EH[ntot] =
1
2

� �
ntot(r)ntot(r�)

|r� r�| drdr�

ñ(r) =
1
�

�

G

ñ(G) eiG·r

EH[ntot] = 2��
�

G

ñ�
tot(G)ñtot(G)

G2

Linear scaling solution of the Poisson equation

100 200 300 400 500
Plane wave cutoff [Ry]
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E
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Fig. 1. Shown is the rapid convergence of the absolute error in the electrostatic

energy Eq. 11 with respect to plane wave cuto� at fixed density matrix. The system

is a single water molecule described with fairly hard GTH pseudo potentials and a

TZV2P basis in a 10Å cubic cell. The relation Ecuto� = �2

2h2 is used throughout this

work to convert the grid spacing h to the corresponding plane wave cuto�.

infinite. All terms of the electrostatic energy are therefore treated simultane-

ously

EES =
⇥

V PP
loc (r)n(r)dr + 2� �

�

G

ñ�(G) ñ(G)

G2 +
1

2

�

I ⇥=J

ZIZJ

|RI �RJ | (7)

using the Ewald sum method [42] as it is commonly implemented in plane

wave electronic structure codes [6]. The long range part of all electrostatic

interactions is treated in Fourier space, whereas the short range part is treated

in real space. This separation is conveniently achieved for the ionic cores if a

Gaussian charge distribution (nI
c(r)) for each nucleus is introduced and defined

9

H2O, GTH, TZV2P

Electrostatic 
Energy

Efficient Mapping 
FFT



Density collocation

Real Space Integration
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Finite cutoff and simulation box define a real space grid

G. Lippert et al, Molecular Physics, 92, 477, 1997 
J. VandeVondele et al, Comp. Phys. Comm.,167 (2), 103, 2005

n(r) =
�

µ�

Pµ��µ(r)��(r)�
�

µ�

Pµ��̄µ�(R) = n(R)

n(R) → ∇n(R)

vXC [n](r) → VXC(R) =
∂ϵxc

∂n
(R)

Hµν
HXC = ⟨µ|VHXC(r)|ν⟩ →

∑

R

VHXC(R)ϕ′

µν(R)

Numerical approximation of the gradient 
!

 ϵXC and derivatives evaluated on the grid !

Real space integration

Real Space Grid

Finite cuto� and computational box define a real space grid {R}

13

n̂(G)� VH(G) =
n̂(G)
G2

� VH(R)

Screening 
Truncation



Energy Ripples 
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Low density region can induce unphysical behaviour of terms such |�n|2

n�

108 J. VandeVondele et al. / Computer Physics Communications 167 (2005) 103–128

(7) calculation of the matrix element of vxcτ between

the Gaussians

(16)

∫
vxcτ (r)∇ϕµ(r) · ∇ϕν(r)dr,

where the grid based collocation, integration and con-

sistent differentiation are discussed in more detail in

Sections 3.1 and 4.3.1.

The presence of terms such as

(17)t = − |∇n|2
nα

,
∂t

∂|∇n| = −2 |∇n|
nα

in GGAs and meta-GGAs leads to very sensitive be-

haviour in regions of vanishing density such as the tails

of the atomic densities. The near singularities encoun-

tered in Eq. (17) are in that case customarily resolved

by removing the contributions to exc and vxc of the

regions where the density n is lower than a given cut-

off ϵ. In addition, care should be taken to fulfil numeri-

cally the exact relationship |∇n| < 8nτ for functionals

that depend on the kinetic energy density. However,

using pseudopotentials, the density can also be small

in the core region, where gradients are typically larger.

This is especially true for the GTH pseudopotentials

that by construction have a zero pseudocharge den-

sity at the core for all elements apart from H. We

illustrate in Fig. 2 that for these pseudopotentials the

core region is by far the most problematic part of the

exchange and correlation potential. The pronounced

spike of vxc at the core gives rise to small varia-

tions in the total energy as atoms move relative to the

grid.

The G space differentiation is commonly used in

plane waves codes but is not the best choice with the

GPW method. Whereas G space differentiation of the

density on the grid yields the exact derivative ∇n(r)

in the former case, the approximate ∇ñ(r) is obtained

in the later case. When used, the differentiation of a

small spike of ∂e/∂|∇n| in (13) gives rise to the strong
‘ringing’ effects illustrated in Fig. 2. Even though in-

tegration effectively filters out the highest frequencies,

the energy oscillates significantly when the system is

translated (see panel (b) of Fig. 3).

We have explored different schemes to compute

the exchange and correlation energy more accurately,

and to describe them we introduce a nearest neighbour

smoothing operator Sq defined as

(Sq f )i,j,k

= q3

q3 + 6q2 + 12q + 8

(18)

×
1∑

l=−1

1∑

m=−1

1∑

n=−1
q−|l|−|m|−|n|fi+l,j+m,k+n,

Fig. 2. Behaviour of n and vxc with the BLYP functional close to the core of an O atom in a water molecule along the bisector of the HOH

angle with an unusually large cutoff of 5000 Ry. The left panel shows the electron density, whereas the three right panels show vxc as calculated

using a derivative in G space, using a quadratic spline (D6(S6)−1) and using the operators S10–D6 as defined in the text. It can be observed

that the latter methods lead to a more physical exchange and correlation potential surface.

H2O, BLYP 
close to O along 

HOH bisector
with PP 

low density  
at core 

locally averaged 
n (neigh. q 
points Sq) 

!
smoothed finite 
differences (Dq)

Spikes in vxc ⇒ small variations of the total energy as atoms move relative to the grid
J. VandeVondele et al. / Computer Physics Communications 167 (2005) 103–128 109

Fig. 3. The performance of theG space, (D6(S6)−1),D6, S50–D6(S6)−1 and S10–D6 operators as defined in the text (triangles,+,×, squares
and circles) are compared at different cutoffs. Reference calculations employed the usual G space derivative at 2000 Ry. Panel (a) shows the
average systematic error in the interaction energy with the BLYP functional for water dimer configurations, panel (b) the oscillations of the
interaction energy due to imperfect translational invariance, and panel (c) the magnitude of the forces on the centre of mass.

and a smoothed finite differences operator Dq that for
the x derivative is

(D
q
xf )i,j,k = q2

2(q2 + 4q + 4)

×
1∑

l=−1

1∑

m=−1
q−|l|−|m|

(19)× (fi−1,j+l,k+m − fi+1,j+l,k+m)

and likewise for the other directions.
To avoid the ‘ringing’ a numerical derivative that

assumes less continuity can be used. D6(S6)−1 calcu-
lates the derivative of the quadratic spline interpolat-
ing n on the grid. It behaves better than the G deriva-
tive, but the energy oscillations are not sufficiently re-
duced. D6 alone, i.e. without sharpening step (S6)−1,
gives information on the neighbourhood rather than on
the grid point itself, and damps the oscillations more,
at a cost in the accuracy of the energies (see panels (a)
and (b) of Fig. 3).
For a translationally invariant evaluation of the in-

tegral of a function f over the grid points (i, j, k) it
is appropriate to associate to each mesh point not the
value of the function itself, but rather an estimate of
its average value in a neighbourhood of (i, j, k). For
a highly non-linear term such as the exchange corre-
lation energy this average cannot easily be estimated.
We therefore evaluate the xc functionals using a lo-
cally averaged density n̂(r) employing the smoothing
operator Sq . Typical values for q are 10 or 50 de-
pending on the required amount of smoothing. Such
a smoothing is equivalent with a redefinition of EXC

that reduces to the identity as the cutoff is increased.
v̂xc
n̂
can be calculated as function of n̂ = Sqn as

(20)vxcn = v̂xcn̂
δn̂

δn
= Sqv̂xcn̂ .

It is shown in Fig. 3 that the combination of the
quadratic spline and D6 derivatives with the smooth-
ing on n brings the oscillations of the energy and
the magnitude of the forces on the centre of mass
to an acceptable level for cutoffs of about 300 Ry.
S50–D6(S6)−1 has good convergence characteristics,
and implies only a small grid spacing dependent re-
normalisation of EXC. The operator S10–D6 implies
a significant amount of smoothing, resulting in even
less grid dependence in the forces, and is fast to calcu-
late since an inversion step is not necessary, but might
be less appropriate to study systems where significant
charge reorganisation takes place. The exchange and
correlation potentials obtained with these methods are
well behaved, which also helps the convergence of the
SCF procedure.
Nevertheless, none of the methods presented here

is fully satisfactory, as a balance between the differ-
ent accuracy goals is difficult to achieve. Non-linear
core corrected pseudopotentials [55] could provide a
more elegant solution as the problematic region of
small density would be removed. It is likely that these
pseudopotentials can be treated efficiently, and they
would bring additional benefits for strongly spin po-
larised systems. The Gaussian and augmented-plane-
wave (GAPW) method [26,33] could also resolve the
issues described here in a more fundamental way.

G space

H2O dimer

D6(S6)-1
D6

S10-D6

alternatively: 
Non-linear core corrected PP 
GAPW



Multiple Grids
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Integration

For the integartion of
a Gaussian function
with exponent 1 an ac-
curacy of 10�10 re-
quires an integration
range of 10 bohr, a
cuto� of 25 Rydberg,
resulting in 22 integra-
tion points.

⇥ 5000 integration points/integral batch
15

the exponent of Gaussian product selects the grid 
number of grid points is exponent-independent 

Exponent = 1

⇥2
p = 1/2�p

Multiple Grids
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nf
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i )

Multiple Grids
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Eel[n] =
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Linear scaling KS matrix construction 



DFT for very large systems
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CP2K: Ab initio Molecular Dynamics Simulations Towards Linear Scaling HF/Exact Exchange Summary Acknowledgment

Rubredoxin in Water Solution

Solvated Rubredoxin (FeS4); ≈ 2800 atoms; ≈ 55000 bsf

117 s / SCF on 1024 CPUs (XT3), 80% parallel efficiency

Rubredoxin in water solution 
~2800 atoms, ~ 55000 Nao 
117s/scf 1024 CPUs (XT3),  

80% parallel efficiency

Solvated metallo-protein

Sulpizi et al, JPCB ,111, 3969, 2007

Q(R) = 4⇡

Z R

0
�n(r)r2dr �n(r) = n0(r)� nq(r)

M. Walter et al., PNAS, 105, 9157 (2008)

energy ordering of the states in the energy region shown in Fig.
2c correspond well to the delocalized conduction-electron
model, where angular symmetries of 3S, 2D, and 1H appear
between major electron shell closings at 58 delocalized electrons
(closing the 1G shell and opening a gap of 0.5 eV in Fig. 2c) and
at 92 delocalized electrons (0.33-eV gap in Fig. 2c) (4).

As noted above, the bare Au79 core is a spin-open-shell system
without a HOMO–LUMO gap. What stabilizes then the large
0.5-eV HOMO–LUMO gap (Fig. S1) for the fully passivated
compound? The answer is found by comparing Fig. 2b to Fig. 2c.
From Fig. 2b we see that the 3S ! 2D ! 1H band of states is
visible in the electronic structure of the full compound, but the
states are now empty and a large HOMO–LUMO gap of 0.5 eV
is exposed. In other words, 21 electrons are depleted from the
highest electron states of the Au79 core (Fig. 2c), exposing the
large gap after the 1G shell, which corresponds to the gap closing
at 58 delocalized electrons. The 21 electrons are localized from
the delocalized states by hybridization with sulfur states to make
surface covalent bonds to the 21 protecting gold-thiolate units;
therefore, 21 new electron states appear at higher binding
energies in the energy region not shown in Fig. 2.

We have confirmed this mechanism by an analysis of the
electronic structure of a Au80(p-MBA)2 [" Au79(Au(p-MBA)2)]
model cluster (removing all but one RS–AuSR unit from the full
compound): in this case, one electron (the electron occupying
the HOMO state of Au79) is rehybridized to a deeper-lying Au–S
bonding state and thus removed from the delocalized electron
shells of the Au79 core. We thus conclude that the protective
gold-thiolate layer is organized in such a way that the surface of

the Au79 core is chemically fully passivated (each surface gold
atom has at least one covalent bond to sulfur) and, at the same
time, a major shell closing of the core is exposed and a large
HOMO–LUMO gap is obtained for the full compound. A visual
impression of the 1H angular symmetry of the LUMO state is
conveyed by Fig. 2d (note the 10 nodes in the perimeter of the
Au79 core).

The reorganization of the electronic structure of the gold core
upon passivation is achieved without any significant charge
transfer from the gold core to the ligands. The surface covalent
bond between gold in the Au79 core and the sulfur in RS–AuSR
is only weakly polarized. Bader charge analysis (see Table S1)
yields the total charge in the core to be !2.2 e; i.e., only 0.055
electron per surface gold atom in the core has been transferred
to the gold-thiolate layer outside the core. The charge transfer
has contributions both from Au(6s) and Au(5d) electrons. The
weak positive charging of the surface gold atoms induces for-
mation of holes in the atomic 5d10 shell of Au. This indicates
magnetic behavior; indeed, it was recently shown that thiolate-
protected 1.4-nm Au particles exhibit permanent magnetism up
to room temperature (38). The measured magnetic moment of
0.036 !B per Au atom agrees well with the d-hole generation
found in this work.

Phosphine-Halide-Protected 39-Atom Gold Cluster. In 1992, the
Au39(PPh3)14Cl6z compound was isolated and crystallized, and
for 15 years remained the largest ‘‘soluble’’ cluster with an
unambiguously determined structure (13). Although density-
functional theory results on its atomic structure were discussed
recently (36), a detailed electronic structure analysis of the
bonding mechanism or of the factors underlying its stability has
not been presented. As discussed in ref. 36, we constructed a
model cluster Au39(PH3)14Cl6 based on the experimental struc-
ture (13) and fully relaxed it in its anionic charge state (z " #1).
The geometrical arrangement of the Au39 gold core of this
cluster is close to D3 symmetry and can be also described as two
hexagonal close-packed (hcp) crystallites, joined together by 30°
twist (see Fig. 3a and refs. 13 and 36). There is only one fully
coordinated gold atom in the center of a hexagonal antiprismatic
cage. The calculated HOMO–LUMO gap is as large as 0.8 eV.
The angular momentum analysis of the electron states around
the gap (Fig. 4c) shows that the gap closes a band of states that
have dominantly F character, whereas the states above the gap
have a major G character. The F-shell closing indicates an
effective conduction electron count of 34 in the gold core. This
is consistent with the fact that there are six ionocovalent AuCl
bonds at the surface, thereby reducing the effective count of
delocalized electrons from 40 to 34, and satisfying Eq. 2 for
n* " 34.

Undecagold and Tridecagold Compounds. Various Au11- and Au13-
based phosphine-halide-passivated clusters have been charac-
terized in solid state by x-ray diffraction since the late 1970s
(14–17). The undecagold compounds generally have the formula
Au11(PR3)7X3, where X " halide or thiolate, and the gold
skeleton often has an approximate C3v symmetry. We have
investigated here the electronic structure of clusters
Au11(PH3)7(SMe)3 and Au11(PH3)7Cl3, which are homologous
models for a recently reported thiolate-stabilized cluster Au11(S-
4-NC5H4)3(PPh3)7 (17). The optimized structures of these clus-
ters are shown in Fig. 3 c and d.

The HOMO–LUMO gaps of these compounds are 1.5 eV for
X " SMe and 2.1 eV for X " Cl (Table 1). Comparing Fig. 4 a
and b, one notes that the dominant angular momentum character
of the states around the gap changes from P symmetry to D
symmetry. In the delocalized electron model this corresponds to
closing of the 8-electron (in configuration 1S21P6) gap. This gap
exposure is due to the fact that the three halide or thiolate

Au      (p−MBA)102 44

Au      (p−MBA)102 44

79Au
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Fig. 2. Electronic structure analysis of the Au102(p-MBA)44 cluster. (a) The
radial dependence of the integrated induced charge Q(R) upon removing (red
curve) and adding (green curve) one electron to the neutral Au102(p-MBA)44

cluster (Upper), and the radial distribution of atoms (Lower). The dashed line
indicates a midpoint between the surface of Au79 core and the Au-thiolate
layer. Q(R) " 4" $R %#(r) r2 dr, where %#(r) " #0(r) # #q(r) is the induced charge
difference from two density functional theory (DFT) calculations for the
neutral and charged particle. (b) The angular-momentum-projected local
electron density of states (PLDOS) (projection up to the I symmetry, i.e., l " 6)
for the Au79 core in Au102(p-MBA)44. (c) The angular-momentum-projected
electron density of states (PDOS) for the bare Au79 without the Au-thiolate
layer. (d) A cut-plane visualization of the LUMO state of the Au102(p-MBA)44

cluster. Note the H symmetry (10 angular nodes) at the interface between the
Au79 core and the Au-thiolate layer. In b, the zero energy corresponds to the
middle of the HOMO–LUMO gap, whereas in c the zero energy is at the HOMO
level (dashed lines). For plotting PLDOS/PDOS curves, each individual electron
state is displayed by a Gaussian smoothing of 0.03 eV. Shell-closing electron
numbers are indicated in b and c.
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CP2K: science (I)

Electronic structure of nanoparticles

Ligand-protected Au cluster 
762 atoms, ~3400 el. 
as superatom complex

Metallicity of the Au79 core

http://www.cp2k.org/science

http://www.cp2k.org/science


Hard and Soft Densities
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Formaldehyde

Pseudopotential  ➯ frozen core  

Augmented PW ➯  separate regions (matching at edges)    LAPW, LMTO 
(OK Andersen, PRB 12, 3060 (1975) 

Dual representation ➯ localized orbitals and PW                              
PAW (PE Bloechl, PRB, 50, 17953 (1994))



Partitioning of the Density
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Gaussian Augmented Plane Waves
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n(r) − ñ(r) = 0

nA(r) − ñA(r) = 0
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ñAn = ñ +
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Χµ projection of φµ in ΩA 
through atom-dependent d’
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nA(r) =
∑

µν

PµνχA
µ χA

ν

χµ =
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d′Aµα gα(r)
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∑
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μ

ν μ ν
overlap in A 

Local Densities

projector basis (same size)



Density Dependent Terms:  XC
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A
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∫
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Semi-local functional like local density approximation, generalised gradient 
approximation or meta-functionals
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ñ(r) +
∑

A

nA(r) −
∑

A

ñA(r)

}

dr



Density Dependent Terms:  ES
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A

Non local Coulomb operator

n
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∑
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∑
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A(r)

}

QL
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∫
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nA(r) − ñA(r) + nZ
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}

rlYlm(θφ)r2dr sin(θ)dθdφ

Same multipole expansion as the 
local densities

Compensation 
charge

V [ñ + n
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Interstitial region
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GAPW Functionals

23

on global grids 
via collocation + FFT

Analytic integrals 
Local Spherical Grids

Lippert et al., Theor. Chem. Acc. 103, 124 (1999);  
Krack et al, PCCP,  2, 2105 (2000)

Iannuzzi, Chassaing, Hutter, Chimia (2005);  
VandeVondele , Iannuzzi, Hutter, CSCM2005 proceedings

Exc[n] = Exc[ñ] +
∑

A

Exc[nA] −
∑

A

Exc[ñA]

EH [n + n
Z ] = EH [ñ + n

0] +
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A] −

∑

A

EH [ñA + n
0]



All-electron Calculations:CP2K vs G03
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Energy Functional Minimization

25

Standard: Diagonalisation + mixing (DIIS, Pulay, J. Comput. Chem. 3, 
556,(1982); iterative diag. Kresse G. et al, PRB, 54(16), 11169, (1996) )  

Direct optimisation: Orbital rotations (maximally localised Wannier 
functions) 

Linear scaling methods: Efficiency depends on sparsity of P ( S. 
Goedecker, Rev. Mod. Phys. 71, 1085,(1999))

P(r, r⇥) � e�c
⇥

Egap|r�r�|

Example: DNA Crystal

2388 atoms, 3960 orbitals, 38688 BSF (TZV(2d,2p))
density matrix, overlap matrix

28

P

SPµ� =
�

pq

S�1
µp S�1

q�

⇥⇥
�p(r)P(r, r�)�q(r⇥)drdr⇥

C� = arg min
C

�
E(C) : CT SC = 1

⇥



Traditional Diagonalization
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Eigensolver from standard parallel program library: SCALAPACK

KC = SC�

DIIS for SCF convergence 
acceleration: few iterations e = KPS� SPK

error matrix

scaling (O(M3)) and stability problems

Diagonalization of K’ and back transformation of 
MO coefficients (occupied only (20%))

KC = UT UC� �
�
(UT )�1KU�1

⇥
C⇥ = C⇥�

Cholesky decomposition

Transformation into a standard eigenvalues problem

S = UTU C0 = UC



HC and SX 
dominated 
O(MN)

Orbital Transformation Method

27
VandeVondele et al, JCP, 118, 4365 (2003)

Auxiliary X, linearly constrained  variables  to parametrise the occupied subspace

Linear constraint

C(X) = C0 cos(U) + XU�1 sin(U)

XSC0 = 0
not linear orthonormality constraint

minimisation in the auxiliary tangent space, 
idempotency verified

�E(C(X)) + Tr(X†SC0�)
�X

=
�E

�C

�C
�X

+ SC0�

Preconditioned gradients

P(H� S�)X�X ⇥ 0 X�
⇥

PX

Guaranteed convergence  

Various choices of preconditioners  

Limited number of SCF iterations  

KS diagonalisation avoided  

Sparsity of S and H can be exploited  

Scaling O(N2M) in cpu and O(NM) in 
memory 

Optimal for large system, high 
quality basis set

CG(LS) or DIIS

matrix functionals by Taylor 
expansions in XTSX

CTSC = I

U =
�
XTSX

�1/2



OT performance
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CPU time for 1 MD step: SCF+Forces

Structure optimisation  50÷100 iterations = ~1 hour for 512 H2O 
MD simulation (10 ps) 10000 iterations  = ~1ps per day for 512 H2O

 TZV2P (40 functions per H2O), 
280 Ry  PW cutoff 

eps(scf) = 10−6, CRAY XT5

118 J. VandeVondele et al. / Computer Physics Communications 167 (2005) 103–128

Table 1
Shown is the execution time in seconds of a single diagonalisation
using ScaLAPACK routines, and the time needed by the OT routines
for one SCF iteration. The calculations were performed on 32 CPUs
of an IBM SP4. A sample of 64 H2O molecules has been employed,
and the basis sets DZVP, TZVP, TZV2P, QZV2P, and QZV3P re-
sult in a total of 1472, 1856, 2560, 2944, and 3648 basis functions,
respectively

DZVP TZVP TZV2P QZV2P QZV3P
OT 0.50 0.60 0.77 0.87 1.06
Diagonalisation 6.02 8.40 13.80 17.34 24.59

in particular, if a good initial guess c0 can be gen-
erated. This is frequently the case during molecular
dynamics simulations. Example terms needed for the
derivative ∂E(c(x))

∂c
∂c
∂x are

(52)
∂E(c(x))

∂c

(
∂(xTSx)1

∂x

)
= Sx(M),

(53)

∂E(c(x))

∂c

(
∂(xTSx)2

∂x

)
= Sx

(
O(M) + (M)O

)
,

∂E(c(x))

∂c

(
∂(xTSx)3

∂x

)

(54)= Sx
(
O(OM + MO) + (MO)O

)
,

where O = xTSx and M = (xTHc) + (xTHc)T, and
terms are grouped to suggest an efficient way of eval-
uation.
Table 1 compares directly the computational cost

of one step of the OT algorithm with the cost of
solving the generalised eigenvalue equation for the N

lowest eigenvectors using the ScaLAPACK routines
pdsyevx, pdsygst, and pdtrsm. It can be ob-
served that the OT algorithm is far superior.

7. Ab initio molecular dynamics

Classical molecular dynamics simulations are well
established as a powerful technique to study dynamic
and thermodynamic properties of atomic and molecu-
lar systems at a finite temperature [42]. Similar studies
can be performed with ab initio molecular dynamics in
which explicit electronic structure calculations are em-
ployed to compute potential energies and forces [6].
A significant advantage of ab initio molecular dynam-
ics is that no parametrisation of an empirical potential

is needed and as such a wide range of systems can
be simulated, even if unexpected chemical events take
place. The length and time scales of typical ab initio
molecular dynamics simulations are currently given by
approximately 10 to 1000 atoms and 1 to 100 ps.
Born–Oppenheimer (BO) molecular dynamics is a

commonly used form of ab initio molecular dynamics
simulations, and is implemented in CP2K. In BO MD
the atomic coordinates are treated as classical coordi-
nates, and the ions are propagated in time using New-
ton’s equations of motion with the electronic ground
state energy as the potential energy surface. The equa-
tions of motion can hence be written as

MAR̈A(t) = −∇AE
(
{RA}

)

(55)= −∇Amin
ρ(r)

E
(
{RA},ρ(r)

)
,

where MA and RA are the atomic mass and atomic
coordinates of the atom A, respectively. We note that
this simple form of the equations of motion introduces
a clear separation between the ionic propagation and
the electronic structure part, the latter being a “black-
box” returning energies and forces for a given ionic
configuration. We exploit this in CP2K by introducing
sufficiently abstract interfaces to the electronic struc-
ture code (see Section 4) so that other methods com-
monly used in molecular simulation such as, e.g., path
integral MD or MD simulations in the isothermal en-
semble (NVT) are readily available.
The time propagation of the atomic coordinates is

performed with the velocity Verlet algorithm [56], as
it is simple and time reversible. We notice that for
BO MD, the time step used in the propagation is only
dependent on the frequency spectrum of the atomic
system. The time reversibility guarantees that no long
term drift of the constant of motion, i.e. the sum of the
atomic kinetic and potential energy, can be observed,
provided that the forces are the exact derivatives of
the potential energy (see paragraph 4.3.3 of Ref. [56]).
As shown in Section 2, the computed forces are ex-
act derivatives of the energy only if ∂E

∂Pµν = 0. In any
practical calculation, the wave function optimisation
is such that the above criterion is only approximately
true, and hence the resulting drift in the constant of
motion can be one criterion to judge the quality of
the simulation. This is at variance with Car–Parrinello
[72] simulations, where the CP constant of motion (i.e.
ionic kinetic energy+ potential energy+ fictitious ki-

1 SCF iter
64 H2O 

32 CPUs IBM SP4



Dye Sensitized Solar Cell

29

F. Schiffmann et al., PNAS 107 4830 (2010)

In situ electronic spectroscopy and dynamics

 1751 atom computational cell, 864  (TiO2),  
60 dye+electrolyte, 828 solvent  

  9346 electrons, 22951 basis functions  

 MD simulation using PBE (DFT+U)  

 CPU time on 1024 cores Cray-XT5  

 SCF iteration: 13.7 seconds  

 MD time step: 164 seconds

rithms. On the highest level, parallel algorithms are based on message passing
with the MPI and suitable for distributed memory architectures. This level is
important, and requires careful design of data structures and algorithms. In-
creasingly, MPI level parallelism has been augmented with shared memory par-
allelism based on threading and programmed using OpenMP directives. This
combination becomes more and more important as the core count per node in-
creases, and top-level computers feature 100’000 and more cores. Ongoing work
aims at porting the main algorithms of cp2k to accelerators and GPUs, as
these energy e�cient devices become more standard in supercomputers. At the
lowest level, auto-generated and auto-tuned code allows for generating CPU-
specific libraries that deliver good performance without a need for dedicated
code development.

5 Reference Applications

5.1 Dye Sensitized Solar Cells (DSSC)

Figure 1: Snapshot of a DFT based simulation of the an intermediate dye-iodide
complex attached to the TiO2 surface. The iodide-surface distance coincides
with the maximum concentration of ions found in classical molecular dynamics
simulations of the electrolyte near surface.

One application demonstrating the potential of cp2k for simulating complex
systems is a study of the active interface in dye sensitized solar cells. In these
devices the redox active region consists of a dye attached to a semiconductor

9

dye-iodide complex attached to TiO2



Linear Scaling SCF
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VandeVondele, Borstnik, Hutter; JCTC 10, 3566 (2012)

  

Linear Scaling SCF in CP2K

22nm 22nm

2
2
n
m

4
n
m

Traditional approaches to solve the self-
consistent field (SCF) equations are O(N3) 
limiting system size significantly.

A newly implemented algorithm is O(N), 
allowing for far larger systems to be studied.

New regime: small devices, heterostructures,
interfaces, nano-particles, a small virus.

Largest O(N3) calculation with CP2K 
(~6000 atoms)

Largest O(N) calculation with CP2K
(~1'000'000 atoms)

VandeVondele J; Borstnik U; Hutter J; 2012, Linear scaling self-consistent field calculations for millions of atoms in the condensed phase. JCTC 10: 3566 (2012)

 Based on sparse matrix matrix 
multiplications  

!

!

 Self consistent solution by mixing 

!

!

 Chemical potential by bisecting until 

P =
1

2

�
I � sign

�
S�1H � µI

��
S�1

Hn+1(Pn+1)

Ĥn+1 = (1� ↵)Ĥn � ↵Hn+1

µn+1 : |trace(Pn+1S)�Nel| < 1/2



Sparse Matrix Library
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Borstnik, et al; submitted

DBCSR: Distributed Blocked Compressed Sparse Row

 For massively parallel architectures 

 Optimised for 10000s of non-zeros per row (dense limit) 

 Stored in block form : atoms or molecules 

 Cannons algorithm: 2D layout (rows/columns) and 2D distribution of data 

 Homogenised for load balance 

!

!

!

  

DBCSR: a sparse matrix library
Distributed Blocked Compressed Sparse Row
Distributed Blocked Cannon Sparse Recursive

Cannon style communication 
on a homogenized matrix for 
strong scaling

Borstnik et al. : submitted 

Optimized for the science case: 10000s of non-zeros per row.
The dense limit as important as the sparse limit.

given processor communicates only with nearest neighbours

transferred data decreases as number of processors increases



Millions of atoms
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Millions of atoms 
in the condensed phase

Bulk liquid water.  Dashed lines represent ideal linear scaling. 

Minimal basis sets:
DFT, NDDO, DFTB

Accurate basis sets, DFT

46656 cores

9216 cores

The electronic structure
O(106) atoms in < 2 hours

VandeVondele, Borstnik, Hutter, JCTC, DOI: 10.1021/ct200897x 



Metallic Electronic Structure
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Eband =
�

n

1
⇥BZ

⇥

BZ
�nk�(�nk � Ef )d3k ⇥

�

n

�

k

wk�nk�(�nk � Ef )d3k

Rh band structure

Ef

Ef

CKS and 𝝐KS needed

charge sloshing and exceedingly slow convergence

 Wavefunction must be orthogonal to unoccupied bands close in energy 
!
 Discontinuous occupancies generate instability (large variations in n(r)) 
!
 Integration over k-points and iterative diagonalisation schemes



Smearing & Mixing in G-space
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F (T ) = E �
�

n

kBTS(fn)

Mermin functional: minimise the free energy

S(fn) = �[fn ln fn + (1� fn) ln(1� fn)]

Any smooth operator that allows accurate S(fn)  to recover the T=0 result

fn

⇤
�n � Ef

kT

⌅
=

1

exp
�

�n�Ef

kBT

⇥
+ 1

Fermi-Dirac

Trial density mixed with previous densities: damping oscillations

ninp
m+1 = ninp

m +GIR[ninp
m ] +

m�1X

i=1

↵i

�
�ni +GI�Ri

�

R[ninp] = nout[ninp]� ninp

residual
minimise the residual 
G preconditioning matrix damping low G



Iterative Improvement of the the n(r)
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Input density matrix 
  

Update of KS Hamiltonian

diagonalization plus iterative refinement 

Calculation of Fermi energy and occupations 

New density matrix

Check convergence

Density mixing

CPU Time

Time[s]/SCF cycle on 256 CPUs IBM Power 5 : 116.2

Pin
↵� ! nin(r)

Cn "n

Ef fn

Pout

↵� ! nout(r)

max

�
Pout

↵� �Pin

↵�

 

nout nin nh . . . ! nnew

Pout

↵� nnew(r)



Rhodium: Bulk ans Surface
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E-Ef [eV]
-8 -4 0 4 8

DZVP

DZVP

SZVP

SZV

Q9

Q17

Rh(111) d-projected 
LDOSRhodium: Bulk and Surface

d-projected LDOS

Basis PP a0 [Å] B[GPa] Es[eV/Å2] Wf [eV]

3s2p2df 17e 3.80 258.3 0.186 5.11
2s2p2df 9e 3.83 242.6 0.172 5.14
2sp2d 9e 3.85 230.2 0.167 5.20
spd 9e 3.87 224.4 0.164 5.15

Minimal model for Rh(111) surface:
4 layer slab, 576 Rh atoms, 5184 electrons, 8640 basis function

Bulk: 4x4x4

Surface: 6x6 7 layers



ScaLAPACK for diagonlization

37

Generalized Eigenvalue Problem

State of the Art

ELPA project

ELPA in cp2k

ScaLAPACK in cp2k

576 Cu, nao=14400, Nelect.=6336, k of eigen-pairs=3768

nprocs syevd syevr Cholesky
32 106 (49%) 72 (40%) 38 (21%)
64 69 (46%) 48 (37%) 34 (26%)
128 41 (41%) 29 (34%) 23 (28%)
256 35 (41%) 26 (34%) 24 (32%)

Syevd: D&C
Syevr: MRRR

9 / 25

time x SCF, on CRAY XE6 
!

>70% in eigenvalue solver 
!

poor scaling

Generalized Eigenvalue Problem

State of the Art

ELPA project

ELPA in cp2k

ScaLAPACK

The ELPA project
Beyond the basic ELPA-Lib

The project
Algorithmic paths for eigenproblems
Improvements with ELPA
Efficient tridiagonalization
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Algorithmic paths for eigenproblems III
Problems with this approach:

A T λ

tridiagonal form

transform

q
A

(   ,q  )
T

BisInvIt

QR too slow

slow, not robust

scalingD & C

MRRR

compute

eigenvalues and

−vectors of T

eigenvectors

reduction to

one half BLAS 2

scaling

not partial

not robust enough

Eigenvalue Solvers—The ELPA Project and Beyond, Bruno Lang 9/31

Transformation to tridiagonal form based on around 50%
BLAS-2 operations.
Eigen-decomposition of T traditionally done with routines
such as bisection and inverse iterations.
Divide-and-conquer-based method (D&C)
Multiple relatively robust representations method (MRRR)

Parallel performance depends on data locality and scalability

ScaLAPACK need improvements in numerical stability, parallel
scalability, and memory bandwidth limitations

6 / 25

Generalized Eigenvalue Problem

State of the Art

ELPA project

ELPA in cp2k

ScaLAPACK performance

All electron electronic structure calculation with FHI-aims:
polyalanine peptide

avoiding system-specific complications such as the exact form of the eigenspectrum, or the choice of an optimal precondi-
tioning strategy [11,9]. Even for (i)–(iii), though, a conventional diagonalization of some kind may still be required or is a
necessary fallback.

In general, the solution of (1) proceeds in five steps: (A) Transformation to a dense standard eigenproblem (e.g., by Chole-
sky decomposition of S), HKScl = !lScl [ AqA = kqA, k ! !l; (B) Reduction to tridiagonal form, A [ T; (C) Solution of the tridi-
agonal problem for k eigenvalues and vectors, TqT = kqT; (D) Back transformation of k eigenvectors to dense orthonormal
form, qT [ qA; (E) Back transformation to the original, non-orthonormal basis, qA [ cl. Fig. 1 shows the overall timings of
these operations on a massively parallel IBM BlueGene/P system, for one specific example: the electronic structure of a
1003-atom polyalanine peptide (small protein) conformation in an artificially chosen, fixed a-helical geometry. The example
is set up using the ‘‘Fritz Haber Institute ab initio molecular simulations’’ (FHI-aims) all-electron electronic structure package
[8,32], at essentially converged basis set accuracy for DFT (tier 2 [8]). For (1), this means n = 27,069. The number of calculated
eigenpairs is k = 3410, somewhat more than the theoretical minimum kmin = 1905, one state per two electrons. Steps (A)–(E)
were performed using only subroutine calls as in the ScaLAPACK [33] library where available, as implemented in IBM’s sys-
tem-specific ESSL library, combined as described briefly in [8, Section 4.2]. The reason is that ScaLAPACK or its interfaces are
widely used for (massively) parallel linear algebra and readily available; no claim as to whether our use is the best or only
possible alternative is implied. ScaLAPACK provides the driver routine pdsyevd, which calls pdsytrd, pdstedc, and
pdormtr for tridiagonalization, solution of the tridiagonal eigenproblem and back transformation respectively. pdstedc
is based on the divide-and-conquer (D&C) algorithm, tridiagonalization and back transformation are done using Householder
transformations and blocked versions thereof [34,35]. The back transformation was done only for the needed eigenvectors.

Our point here are some key conclusions, in agreement with reports in the wider literature [12,6,36]. What is most appar-
ent from Fig. 1 is that even for this large electronic structure problem, the calculation does not scale beyond 1024 cores, thus
limiting the performance of any full electronic structure calculation with more processors. By timing steps (A)–(E) individ-
ually, it is obvious that (B) the reduction to tridiagonal form, and then (C) the solution of the tridiagonal problem using the
D&C approach dominate the calculation, and prevent further scaling. For (B), the main reason is that the underlying House-
holder transformations involve matrix–vector operations (use of BLAS-2 subroutines and unfavorable communication pat-
tern); the magnitude of (C) is more surprising (see below). By contrast, the matrix multiplication-based transformations
(A), (D), and (E) either still scale or take only a small fraction of the overall time.

In the present paper, we assume that step (A) already has been completed, and step (E) will not be considered, either. We
present a new parallel implementation based on the two-step band reduction of Bischof et al. [37] concerning step (B), tri-
diagonalization; Section 2.1, with improvements mainly for step (D), back transformation; Section 2.2. We also extend the
D&C algorithm, thus speeding up step (C); Section 3. Some additional optimization steps in the algorithmic parts not specif-
ically discussed here (reduction to banded form, optimized one-step reduction to tridiagonal form, and corresponding back
transformations) will be published as part of an overall implementation in [38]. These routines are also included in recent
production versions of FHI-aims. For simplicity we will present only the real symmetric case; the complex Hermitian case is
similar.

In addition to synthetic testcases, we show benchmarks for two large, real-world problems from all-electron electronic
structure theory: first, the n = 27,069, k = 3410 polyalanine case of Fig. 1, which will be referred to as Poly27069 problem
in the following, and second, an n = 67,990 generalized eigenproblem arising from a periodic Pt (100)-‘‘(5 " 40)’’, large-scale
reconstructed surface calculation with 1046 heavy-element atoms, as needed in [39]. In the latter calculation, the large frac-
tion of core electrons for Pt (atomic number Z = 78) makes for a much higher ratio of needed eigenstates to overall basis size,
k = 43,409 # 64%, than in the polyalanine case, even though the basis set used is similarly well converged. This problem will
be referred to as Pt67990. Benchmarks are performed on two distinct computer systems: The IBM BlueGene/P machine
‘‘genius’’ used in Fig. 1, and a Sun Microsystems-built, Infiniband-connected Intel Xeon (Nehalem) cluster with individual
eight-core nodes. We note that for all standard ScaLAPACK or PBLAS calls, i.e., those parts not implemented by ourselves,
the optimized ScaLAPACK-like implementations by IBM (ESSL) or Intel (MKL) were employed.

Fig. 1. Left: Segment of the a-helical polyalanine molecule Ala100 as described in the text. Right: Timings for the five steps (A): reduction to standard
eigenproblem, (B): tridiagonalization, (C): solution of the tridiagonal problem, and back transformation of eigenvectors to the full standard problem (D) and
the generalized problem (E), of a complete eigenvalue/-vector solution for this molecule, n = 27,069, k = 3410, as a function of the number of processor
cores. The calculation was performed on an IBM BlueGene/P system, using a completely ScaLAPACK-based implementation. Step (C) was performed using
the divide-and-conquer method.

T. Auckenthaler et al. / Parallel Computing 37 (2011) 783–794 785

Tridiagonalization

Solution
Cho. 1

Cho. 2
Back trans.

1003 atoms
3410 MOS
27069 BSf

on IBM BGP with ESSL: pdsyevd
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Generalized Eigenvalue Problem

State of the Art

ELPA project

ELPA in cp2k

ScaLAPACK performance

All electron electronic structure calculation with FHI-aims:
polyalanine peptide

avoiding system-specific complications such as the exact form of the eigenspectrum, or the choice of an optimal precondi-
tioning strategy [11,9]. Even for (i)–(iii), though, a conventional diagonalization of some kind may still be required or is a
necessary fallback.

In general, the solution of (1) proceeds in five steps: (A) Transformation to a dense standard eigenproblem (e.g., by Chole-
sky decomposition of S), HKScl = !lScl [ AqA = kqA, k ! !l; (B) Reduction to tridiagonal form, A [ T; (C) Solution of the tridi-
agonal problem for k eigenvalues and vectors, TqT = kqT; (D) Back transformation of k eigenvectors to dense orthonormal
form, qT [ qA; (E) Back transformation to the original, non-orthonormal basis, qA [ cl. Fig. 1 shows the overall timings of
these operations on a massively parallel IBM BlueGene/P system, for one specific example: the electronic structure of a
1003-atom polyalanine peptide (small protein) conformation in an artificially chosen, fixed a-helical geometry. The example
is set up using the ‘‘Fritz Haber Institute ab initio molecular simulations’’ (FHI-aims) all-electron electronic structure package
[8,32], at essentially converged basis set accuracy for DFT (tier 2 [8]). For (1), this means n = 27,069. The number of calculated
eigenpairs is k = 3410, somewhat more than the theoretical minimum kmin = 1905, one state per two electrons. Steps (A)–(E)
were performed using only subroutine calls as in the ScaLAPACK [33] library where available, as implemented in IBM’s sys-
tem-specific ESSL library, combined as described briefly in [8, Section 4.2]. The reason is that ScaLAPACK or its interfaces are
widely used for (massively) parallel linear algebra and readily available; no claim as to whether our use is the best or only
possible alternative is implied. ScaLAPACK provides the driver routine pdsyevd, which calls pdsytrd, pdstedc, and
pdormtr for tridiagonalization, solution of the tridiagonal eigenproblem and back transformation respectively. pdstedc
is based on the divide-and-conquer (D&C) algorithm, tridiagonalization and back transformation are done using Householder
transformations and blocked versions thereof [34,35]. The back transformation was done only for the needed eigenvectors.

Our point here are some key conclusions, in agreement with reports in the wider literature [12,6,36]. What is most appar-
ent from Fig. 1 is that even for this large electronic structure problem, the calculation does not scale beyond 1024 cores, thus
limiting the performance of any full electronic structure calculation with more processors. By timing steps (A)–(E) individ-
ually, it is obvious that (B) the reduction to tridiagonal form, and then (C) the solution of the tridiagonal problem using the
D&C approach dominate the calculation, and prevent further scaling. For (B), the main reason is that the underlying House-
holder transformations involve matrix–vector operations (use of BLAS-2 subroutines and unfavorable communication pat-
tern); the magnitude of (C) is more surprising (see below). By contrast, the matrix multiplication-based transformations
(A), (D), and (E) either still scale or take only a small fraction of the overall time.

In the present paper, we assume that step (A) already has been completed, and step (E) will not be considered, either. We
present a new parallel implementation based on the two-step band reduction of Bischof et al. [37] concerning step (B), tri-
diagonalization; Section 2.1, with improvements mainly for step (D), back transformation; Section 2.2. We also extend the
D&C algorithm, thus speeding up step (C); Section 3. Some additional optimization steps in the algorithmic parts not specif-
ically discussed here (reduction to banded form, optimized one-step reduction to tridiagonal form, and corresponding back
transformations) will be published as part of an overall implementation in [38]. These routines are also included in recent
production versions of FHI-aims. For simplicity we will present only the real symmetric case; the complex Hermitian case is
similar.

In addition to synthetic testcases, we show benchmarks for two large, real-world problems from all-electron electronic
structure theory: first, the n = 27,069, k = 3410 polyalanine case of Fig. 1, which will be referred to as Poly27069 problem
in the following, and second, an n = 67,990 generalized eigenproblem arising from a periodic Pt (100)-‘‘(5 " 40)’’, large-scale
reconstructed surface calculation with 1046 heavy-element atoms, as needed in [39]. In the latter calculation, the large frac-
tion of core electrons for Pt (atomic number Z = 78) makes for a much higher ratio of needed eigenstates to overall basis size,
k = 43,409 # 64%, than in the polyalanine case, even though the basis set used is similarly well converged. This problem will
be referred to as Pt67990. Benchmarks are performed on two distinct computer systems: The IBM BlueGene/P machine
‘‘genius’’ used in Fig. 1, and a Sun Microsystems-built, Infiniband-connected Intel Xeon (Nehalem) cluster with individual
eight-core nodes. We note that for all standard ScaLAPACK or PBLAS calls, i.e., those parts not implemented by ourselves,
the optimized ScaLAPACK-like implementations by IBM (ESSL) or Intel (MKL) were employed.

Fig. 1. Left: Segment of the a-helical polyalanine molecule Ala100 as described in the text. Right: Timings for the five steps (A): reduction to standard
eigenproblem, (B): tridiagonalization, (C): solution of the tridiagonal problem, and back transformation of eigenvectors to the full standard problem (D) and
the generalized problem (E), of a complete eigenvalue/-vector solution for this molecule, n = 27,069, k = 3410, as a function of the number of processor
cores. The calculation was performed on an IBM BlueGene/P system, using a completely ScaLAPACK-based implementation. Step (C) was performed using
the divide-and-conquer method.

T. Auckenthaler et al. / Parallel Computing 37 (2011) 783–794 785
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1003 atoms
3410 MOS
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on IBM BGP with ESSL: pdsyevd
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pdsyevd (ESSL) on IBM BGP

Polyalanine peptide



ELPA  (http://elpa.rzg.mpg.de)
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Improved efficiency by a two-step transformation and back transformation 

Generalized Eigenvalue Problem

State of the Art

ELPA project

ELPA in cp2k

Two-step Strategy

The ELPA project
Beyond the basic ELPA-Lib

The project
Algorithmic paths for eigenproblems
Improvements with ELPA
Efficient tridiagonalization
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Improvements with ELPA V
Two-step reduction II: banded ! tridiagonal:

A T λ

tridiagonal form

transform

q
A

(   ,q  )
T

BisInvIt

QR too slow

slow, not robust

scalingD & C

MRRR

B q
B

compute

eigenvalues and

−vectors of T

eigenvectors

reduction to

one half BLAS 2

scaling

not partial

not robust enough

partial variant

BLAS 3
mainly

two−step

variant with
better scaling

better scaling

improved robustness

better scaling

complex complex

better scaling

"cheap"

complex

partial

partial

complex

better scaling

higher per−node perf

+ Extended to complex
+ Improved parallelization

Eigenvalue Solvers—The ELPA Project and Beyond, Bruno Lang 15/31

Reduction to band form by blocked orthogonal transformations

Tridiagonalization by n� 2 stages of a bulge-chasing algorithm

Optimized kernel for non-blocked Householder transformations

D&C for partial eigensystem

Perspective: MRRR based tridiagonal eigensolver; hybrid
openMP/MPI version

14 / 25

band form by 
blocked 

orthogonal 
transformations

N atom= 2116; Nel = 16928;  
nmo = 10964; nao = 31740

Benchmark on CRAY-XE6
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Generalized Eigenvalue Problem
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Benchmark on BG-P
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CRAY XE6 BG-P

N atom= 480; Nel = 6000;  
nmo = 7400; nao = 14240

http://elpa.rzg.mpg.de


Large metallic systems
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Slab 12x12 Rh(111) slab, a0=3.801 Å, 1 layer hBN 13x13  
4L: 576Rh + 169BN: Nao=19370 ; Nel=11144 

7L: 1008Rh + 338BN: Nao=34996 ; Nel=19840 
!

Structure opt. > 300 iterations => 1÷2 week on 512 cores

hBN/Rh(111) Nanomesh 
13x13 hBN on 12x12 Rh slab

2116 Ru atoms (8 valence el.) + 1250 C atoms, 
Nel=21928, Nao=47990 ; 

!
~ 25 days per structure optimisation, on 1024 cpus

graph./Ru(0001) Superstructure 
25x25 g on 23x23 Ru



Molecular Dynamics

40

Given the initial conditions ({RI};{PI}), an interacting potential (H),  
and the thermodynamic conditions (T,V,P)

generate deterministic trajectories that sample the 
phase space according to statistical mechanics

M.P. Allen and D.J. Tildesley, Computer Simulations of Liquids, Claredon Press, Oxford, 1987 
D. Frenkel and B. Smit, Understanding Molecular Simulations, Computer Sciences Series, Academic Press, 2002

MD procedure

Breaking the calculation into a series of very short time steps �t
(typically between 1 femtosecond and 10 femtoseconds, i.e. 10�15

s to 10�14 s), thus imposing a discretization of the time line.

A. MartiniMolecular Dynamics Simulation Last Updated 8/2009

MD Basics

! Process summary

Calculate Total 

Force on N 

Atoms

Calculate 

Acceleration of 

Each Atom

Calculate 

Velocity of 

Each Atom

Move All Atoms 

to New 

Positions

Interaction 

Model

Initial 

Positions

At each step the forces on the atoms are computed and combined
with the current positions and velocities to generate new positions
and new velocities.

Computational Experiment



Equations of Motion (EOM)
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Set of classical particles in a potential

With a model potential depending only on the particles’ coordinates 
and no external sources of forces are introduced

ṖI = −
∂H

∂RI

= −
∂U({RI})

∂RI

= FI({RI})

d

dt

∂L

∂ṘI

=
∂L

∂RI

L({RI}, {ṘI}) =
∑

I

1

2
MIṘ

2

I − U({RI})

MIR̈I = FI({RI}) Newton’s second law

Conservation of energy: 
dE

dt
=

dH

dt
= 0

ṖI = −
∂H

∂RI

ṘI = −
∂H

∂PI

Hamilton EOM

Lagrange EOM



Numerical Integration
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Discretisation of time t0 = 0 ; t1 = ∆t ; . . . ; tN = N · ∆t ; . . .

The system is propagated in the phase space

The fast time scales of the system determine the choice of time step. 
A good integrator algorithm: 

 Accurate for long time steps: higher order derivatives, more memory storage required 

 Minimum number of force calculations 

 Long time energy conservation and stability in spite of small perturbations 

 Approximation of the true trajectory: Lyapunov instability 

 Short time reversibility: invariant for t → −t

Velocity Verlet

R(t + ∆t) = R(t) + V(t)∆t +
F(t)

2M
∆t

2

V(t + ∆t) = V(t) +
F(t + ∆t) + F(t)

2M
∆t

 Simple: needs only forces  
 Positions and velocities available at equal time 
 Contains error of order Δt4  
 Time reversible 
 Conserves volume in phase space: symplectic 
 Long time stability 
 Implemented in 3 steps: half kick/drift/half kick



Implementation of Velocity-Verlet

43

Half Kick – Drift – Half Kick

Three steps implementation of the Velocity Verlet scheme

Half Kick -- Drift -- Half Kick

Velocity Verlet: pseudo-code

7

Implemented in three steps: half kick/drift/half kick

Given R(:),V(:),F(:) at time-step itime

Update V(:) by half time-step

V(:)  :=  V(:)  +  dt/(2*M)*F(:)

Then update R(:) by the entire time-step

R(:)  :=  R(:)  +  dt*V(:)

Compute the new F(:) by using the updated R(:)

Finalize the update of V(:) by the second half time-step 

V(:)  :=  V(:)  +  dt/(2*M)*F(:)

Coordinates and Velocities available at the same time

Limited use of memory: only three arrays of size 3xN are needed

7



Choice of the Time Step
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Tuning the Time–Step

The integration must be e�cient and reliable
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Pairwise potential 
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Tuning the Time–Step
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of motion



Microcanonical  Ensemble
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By integrating the EOM, a trajectory in the NVE ensemble 
is generated: micro-states probability distribution

The instantaneous temperature fluctuates. 

Time-averages correspond to NVE ensemble averages 

Irrespective of the initial state, all accessible micro-
states should be  visited (ergodicity)

Any physical quantity that can be described in terms of the available 
degrees of freedom is an observable

N, V, and the internal energy E are the 
constants of motion

QNV E =
�

�

�((�)� E)

Fobs = �F ⇥ens =
1

�obs

�

t

F (�(t))

dH
dt

=
⇤

I

�
�H
�RI

ṘI +
�H
�PI

ṖI

⇥
= 0

ṘI =
�H
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ṖI = � �H
�RI

T ({PI}) =
1

3NkB

�

I

MIv
2
I

TNV E =
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Test on Required Accuracy of Forces
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Classical FF, 64 H2O at 330 K: TIP3P(flexible), SPME
Test on Required Accuracy of Forces

Classical Force Field Calculations, 64 molecules, 330 K
TIP3P (flexible), SPME (↵ = 0.44,GMAX = 25),

Stability: Accuracy of Forces

Stdev. �f Stdev. Energy Drift
Hartree/Bohr µHartree µHartree/ns Kelvin/ns

– 170.35 35.9 0.06
10�10 179.55 -85.7 -0.14
10�08 173.68 6.5 0.01
10�07 177.83 -58.2 -0.10
10�06 — -385.4 -0.63
10�05 — 9255.8 15.21
10�04 — 972810.0 1599.31

Stability depends on accuracy of forces



Extended System
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Generate the correct Boltzmann distribution  
by coupling with a heat bath Pi =

exp(−Ei/kBT )
∑

j exp(−Ej/kBT )

To extend the applicability of MD to other ensembles, the Lagrangian equations of 
motion need to be reformulated: the system moves in a different phase space 

impose control of specific thermodynamic variables

 Andersen Thermostat: Stochastic approach 
      uncorrelated stochastic collisions of randomly selected particles with the heat bath 
      MC moves from one constant energy shell to another 
!

 Nose Thermostat: Extended Lagrangian approach  
       deterministic evolution derived from a properly modified Lagrangian, i.e. new EoM 
       the extended system generates microcanonical ensemble in modified phase space

Canonical Ensemble

Dynamical Friction

LNose =
∑

I

MI

2
s2

Ṙ
2

I − U({RI}) +
Q

2
ṡ2 − gkBT ln s



Nose-Hoover EoM
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The additional variable s can be interpreted as scaling factor of time. 
The Lagrangian generates a dissipative dynamics, leading to a non-Hamiltonian flow. The 

fluctuations of the friction term generate a canonical distribution

R̈I =
FI

MI

− ṡṘI

T < T T > T

larger frictionsmaller friction

Ergodicity problems can be solved by implementing a chain of thermostats

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nosé-Hoover thermostat chains

• standard Nosé-Hoover thermostat:
– does not always yield ergodic dynamics – e. g. harmonic oscillator

– slow response time

• Nosé-Hoover thermostat chains: Thermostatting the thermostat(s)

SYSTEM Thermostat
1

Thermostat Thermostat
2 3

�̇1 =
1

Q1

⇤
N⇧

I=1

MIṘ
2
I � 3NkBT

⌅
� �1�2

...

�̇k =
1

Qk

�
Qk�1�

1
k�1 � kBT

⇥
� �k�k+1

s̈ =
1

Q

[

∑

I

MIṘ
2

I − gkBT

]

HNose = ENV T =
∑

I

MIs
2Ṙ

2

I

2
+ U({RI}) +

Q

2
ṡ2 + gkBT ln s

Equations of motion

Constant of motion



Integrators for Ab-initio MD
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Born-Oppenheimer MD 
Adiabatic approx. 

Semiclassical approx.

t0 t1 t1 + SCF

LBO

(

{RI}, {ṘI}
)

=
N

∑

I=1

1

2
MIṘ

2
I − min

{φi}
EKS ({φi} , {RI}) No electron Dynamics

FI = − [⟨Ψ0|∇IHKS|Ψ0⟩ + ⟨∇IΨ0|HKS|Ψ0⟩ + ⟨Ψ0|HKS|∇IΨ0⟩]

MIR̈I(t) = −∇I

[

min
{φi}

EKS ({φi} , {RI(t)})

]

Classical equations of motion

Integration step determined by the time scale 
of the nuclear dynamics:  ~femtoseconds



Forces in BO-MD
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For exact eigenstates and complete basis sets, the contributions from 
variations of the wavefunction vanish exactly 

F
HFT

I = −⟨Ψ0|∇IHKS|Ψ0⟩ Hellman-Feynman

F
IBS
I = −

∑

iνµ

(〈

∇Iϕν

∣

∣HNSC
e − ϵi

∣

∣ ϕµ

〉

+
〈

ϕν

∣

∣HNSC
e − ϵi

∣

∣∇Iϕµ

〉)

F
NSC
I = −

∫

dr (∇In)
(

V
SCF

− V
NSC

)

P. Bendt et al., PRL, 50, 1684 (1983) 
G.P. Srivastava et al., 36, 463 (1987)

∇Iφi =
∑

ν

(∇Iciν) ϕν(r; {RI}) +
∑

ν

ciν (∇Iϕν(r; {RI}))

implicit dependence of the 
expansion coefficients:  

not exact self-consistency 
NSC

explicit dependence of the 
basis function 

IBS



Stability in BOMD
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64 H2O, 330 K, 1gr/cm3  
TZV2P, PBE, GTH, 280 Ry 

0.5fs step 
!

Reference: 1ps, SCF 10-10 
Unbiased initial guess

BOMD

Unbiased initial guess; x(t) = x0(q(t))

�SCF MAE EKS MAE f Drift
Hartree Hartree/Bohr Kelvin/ns

10�08 1.2 · 10�11 5.1 · 10�09 0.0
10�07 9.5 · 10�10 5.6 · 10�08 0.1
10�06 6.9 · 10�08 4.8 · 10�07 0.4
10�05 7.4 · 10�06 5.6 · 10�06 2.3
10�04 3.3 · 10�04 5.9 · 10�05 ⇥ 50

Consistent with results from classical MDError in Forces ⟺ MD Stability

min
�

EKS [{�}]

dEKS[{�}]/dRForces

Energy error 2nd order in 

error 1st order in 

�⇥

�⇥



Extrapolation Methods
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Unbiased guess  

!
Combinations of previous wavefunctions: unstable 

!
Extrapolation of the density matrix: PS methods, O(MN2) 

!
!
!
Always stable predictor corrector (ASPC) based on OT minimisation,

Cinit = C0

C(tn) =
K⇤

m=1

(�1)m+1

�
K
j

⇥
C(tn�m)C†(tn�m)S(tn�m)C(tn�1)

Kolafa J.,  J. Comput. Chem. 25, 335 (2004)

Integration of electronic DOF has to be  
accurate: good wavefunction guess gives improved efficiency 
stable: do not destroy time-reversibility of nuclear trajectory



ASPC
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Cp(tn) =
K⇤

m=1

(�1)m+1m

� 2K
K�m

⇥
�2K�2

K�1

⇥C(tm�m)C†(tn�m)S(tn�m)C(tn�1)

The corrector step minimises the error and reduces the 
deviation from ground state

Projection onto the occupied subspace

C(tn) = �MIN[Cp(tn)] + (1� �)Cp(tn) � =
K

2K � 1

Kolafa J.,  J. Comput. Chem. 25, 335 (2004),  
VandeVondele et al, JCP, 118, 4365 (2003)

Preconditioned OT minimisation step: large move

ite
ra

te

Reversibility 
O(∆t(2K-1))



Efficiency and Drift
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64 H2O, 330 K, 1gr/cm3 

Born–Oppenheimer Molecular Dynamics Errors and Drifts Error Distribution Wavefunction Extrapolation Extended Lagrangian BOMD Conclusions

Work (v.�f) = DriftBorn–Oppenheimer Molecular Dynamics Errors and Drifts Error Distribution Wavefunction Extrapolation Extended Lagrangian BOMD Conclusions

Efficiency and Drift

Method �SCF Iterations Drift (µHartree/ns)
Guess 10�06 14.38 253

PS4 10�10 14.95 –
PS4 10�08 8.05 -195
PS4 10�07 6.47 -3441
PS4 10�06 5.22 -7186
PS4 10�05 4.60 52771

ASPC 10�06 5.01 -115
ASPC 10�05 3.02 -2758
ASPC 10�04 1.62 -1059843
ASPC 10�02 1.03 -13219651

PS4-6 
ASPC-6 

GUESS-6

Efficiency and Drift

Method ✏SCF Iterations Drift (Kelvin/ns)

ASPC(4) 10�04 1.62 1742.4

ASPC(5) 10�04 1.63 1094.0

ASPC(6) 10�04 1.79 397.4

ASPC(7) 10�04 1.97 445.8

ASPC(8) 10�04 2.06 24.1

Importance of Time-Reversibility

Method ✏SCF Iterations Drift (Kelvin/ns)

Guess 10�06 14.38 0.4

ASPC(3) 10�06 5.01 0.2

ASPC(3) 10�05 3.02 4.5

Gear(4) 10�07 6.47 5.7

Gear(4) 10�06 5.22 11.8

Gear(4) 10�05 4.60 86.8

Gear not time reversible



Forces in Approximated BOMD
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Now assume

FBO(R) = FHF(R) + FPulay(R) + Fnsc(R)

F̃(R) = FHF(R) + FPulay(R)

exact

approximated

F̃(R) + Fnsc(R) = FBO(R)� �DṘ friction

Langevin dynamics to correct the error (dissipative drift)

MIR̈I = FBO
I � (�D + �L)ṘI + �D

I + �L
I

Gaussian random noise 
guarantees accurate 
Boltzmann sampling �(�D

I (0) + �L
I (0))(�D

I (t) + �L
I (t))⇥ = 6(�D + �L)MIkBT ⇥t

fluctuation dissipation theorem

given 
�

1
2
MIṘ

2
I

⇥
=

3
2
kBT this determines the friction

T. Kuehne et al, PRL , 98(6), 066401 (2007)
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 liquid silica, 24 SiO2  at 3500 K  
Time step: ∆t = 1 fs  
γD  10-4 fs-1 , K=4

Bonds are swiftly broken and formed  
Worst case scenario for P propagation, as the electronic density is rapidly varying 



Liquid Water

57T. Kuehne et al, J. Chem Theory Compt , 5(2), 235 (2008)

PBE, TZV2P, 320 Ry 
300 K,  ∆t = 0.5 fs, 25+250 ps trajectories 

γD  8.65 10-5 fs-1 , K=7 => 1 PC step, deviation 10-5 au

Statistical error estimation:  
fluctuations of PCF over 25 ps 

relative to all within 2 x std 


