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A guided tour inside the “black box” of ab-initio simulation.

• The rise of quantum-mechanical simulations.
• Wavefunction-based theory
• Density-functional theory (DFT)
• Quantum theory in periodic boundaries
• Plane-wave and other basis sets
• SCF solvers
• Molecular Dynamics

Recommended Reading and Further Study

• Jorge Kohanoff Electronic Structure Calculations for Solids and Molecules,
Theory and Computational Methods, Cambridge, ISBN-13: 9780521815918

• Dominik Marx, Jürg Hutter Ab Initio Molecular Dynamics: Basic Theory and
Advanced Methods Cambridge University Press, ISBN: 0521898633

• Richard M. Martin Electronic Structure: Basic Theory and Practical Methods:
Basic Theory and Practical Density Functional Approaches Vol 1 Cambridge
University Press, ISBN: 0521782856

• C. Pisani (ed) Quantum Mechanical Ab-Initio Calculation of the properties of
Crystalline Materials, Springer, Lecture Notes in Chemistry vol.67 ISSN
0342-4901.



Motivation

Introduction

Synopsis

Motivation

Some ab initio codes

Quantum-mechanical
approaches

Density Functional
Theory

Electronic Structure of
Condensed Phases

Total-energy calculations

Basis sets

Plane-waves and
Pseudopotentials

How to solve the
equations

Parallel Materials Modelling Packages @ EPCC 4 / 55

The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the application of
these laws leads to equations much too complicated to be soluble.

P.A.M. Dirac, Proceedings of the Royal Society A123, 714 (1929)

Nobody understands quantum mechanics.

R. P. Feynman
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WIEN2k

Fleur

exciting

Elk

LAPW

LMTART

LMTO

FPLO

LMTO
ONETEP

Conquest

BigDFT

O(N)

CRYSTAL

CP2K

AIMPRO

Gaussian
FHI-Aims

SIESTA

Dmol

ADF-band

OpenMX

GPAW

PARSEC

Numerical

CASTEP

VASP

PWscf

Abinit

Qbox

PWPAW

DOD-pw

Octopus

PEtot

PARATEC

Da Capo

CPMD

fhi98md

SFHIngX

NWchem

JDFTx

Planewave

DFT
(r), n(r)

http://www.psi-k.org/codes.shtml
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• Quantum mechanics proper requires full wavefunction of both electronic and
nuclear co-ordinates.

• First approximation is the Born-Oppenheimer approximation. Assume that
electronic relaxation is much faster than ionic motion (me << mnuc). Then
wavefunction is separable

Ψ = Θ({R1,R2, ...,RN})Φ({r1, r2, ..., rn}

Ri are nuclear co-ordinates and ri are electron co-ordinates.
• Therefore can treat electronic system as solution of Schrödinger equation in

fixed external potential of the nuclei, Vext{Ri}.
• Ground-state energy of electronic system acts as potential function for nuclei.
• Can then apply our tool-box of simulation methods to nuclear system.
• B-O is usually a very good approximation, only fails for coupled

electron/nuclear behaviour for example superconductivity, quantum crystals
such as He and cases of strong quantum motion such as H in KDP.
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• Ignoring electron spin for the moment and using atomic units (h̄ = me = e = 1)

[

−1

2
∇2 + V̂ext({RI}, {ri}) + V̂e-e({ri})

]

Ψ({ri}) = EΨ({ri})

where − 1
2
∇2is the kinetic-energy operator,

V̂ext= −
∑

i

∑

I

Zi

|RI − ri|
is the Coulomb potential of the nuclei,

V̂e-e=
1

2

∑

i

∑

j 6=i

1

|rj − ri|
is the electron-electron Coulomb interaction

and Ψ({ri}) = Ψ(r1, . . . rn) is a 3N-dimensional wavefunction.
• This is a 3N-dimensional eigenvalue problem.
• E-e term renders even numerical solutions impossible for more than a handful of

electrons.
• Pauli Exclusion principle Ψ({ri}) is antisymmetric under interchange of any 2

electrons. Ψ(. . . ri, rj , . . .) = −Ψ(. . . rj , ri, . . .)
• Total electron density is n(r) =

∫

. . .
∫

dr2 . . . drn|Ψ({ri})|2
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• Substituting Ψ(r1, . . . rn) = φ(r1) . . . φ(rn) into the Schrödinger equation
yields

[

−1

2
∇2 + V̂ext({RI}, r) + V̂H(r)

]

φn(r) = Enφn(r)

where the Hartree potential: V̂H(r) =

∫

dr′ n(r′)

|r′ − r| is Coulomb interaction

of an electron with average electron density n(r) =
∑

i |φi(r)|2. Sum is over
all occupied states.

• φ(rn) is called an orbital.
• Now a 3-dimensional wave equation (or eigenvalue problem) for φ(rn).
• This is an effective 1-particle wave equation with an additional term, the

Hartree potential
• But solution φi(r) depends on electron-density n(r) which in turn depends on

φi(r). Requires self-consistent solution.
• This is a very poor approximation because Ψ({ri}) does not have necessary

antisymmetry and violates the Pauli principle.
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• Approximate wavefunction by a slater determinant which guarantees
antisymmetry under electron exchange

Ψ(r1, . . . rn) =
1√
n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1, σ1) φ1(r2, σ2) . . . φ1(rn, σn)
φ2(r1, σ1) φ2(r2, σ2) . . . φ2(rn, σn)
..
.

..

.
. . .

..

.
φn(r1, σ1) φn(r2, σ1) . . . φn(rn, σn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Substitution into the Schrödinger equation yields

[

−1

2
∇2 + V̂ext({RI}, r) + V̂H(r)

]

φn(r) (1)

−
∑

m

∫

dr′ φ∗m(r′)φn(r′)

|r′ − r| φm(r) = Enφn(r) (2)

• Also an effective 1-particle wave equation. The extra term is called the
exchange potential and creates repulsion between electrons of like spin.

• Involves orbitals with co-ordinates at 2 different positions. Therefore expensive
to solve.
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• Practical solution of Hartree-Fock developed by John Pople, C. Roothan and
others. (Nobel Prize 1998).

• Key is to solve 1-particle effective Hamiltonian in a self-consistent loop.
Sometimes known as SCF methods (Self Consistent Field).

• Hartree-Fock yields reasonable values for total energies of atoms, molecules.
• Basis of all quantum chemistry until 1990s.
• Error in Hartree-Fock energy dubbed correlation energy.
• Failures: Excitation energies too large.
• Completely fails to reproduce metallic state. (Predicts logarithmic singularity in

DOS at ǫF.)
• Various more, accurate (and expensive) methods such as MP2, MP4,

Coupled-Cluster, full CI are based on HF methods, and give approximations to
the correlation energy.
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• Walter Kohn awarded Nobel Prize for Chemistry for DFT in 1999 with John
Pople.

• Many-body wavefunction Ψ contains much irrelevant information. Concentrate
instead on electron density n(r).

• Hypothesis: n(r) in ground-state contains complete information about system,
and all properties can be calculated as an explicit or implicit functional of
density. (True for Hartree theory, where n(r) determines effective potential for
orbitals.)
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• Ansatz for total energy

E[n(r)] = F [n(r)] +

∫

dr V̂ext(r)n(r).

where F [n(r)] is a universal functional of the density.
• In a landmark paper in 1964 Hohenberg and Kohn proved that n(r) is uniquely

specified by external nuclear potential V̂ext(r).
• If we knew form of functional F [n(r)] we would have a quick and easy

alternative to solving the Schrödinger equation. Unfortunately the universe is
not so kind!

• Write F as a sum of Kinetic, Hartree and other contributions:

F [n(r)] = EK [n(r)] + EH [n(r)] + EXC[n(r)]

• Hartree functional is

EH [n(r)] =
1

2

∫ ∫

drdr′ n(r)n(r′)

|r′ − r|
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• In 1965 Kohn and Sham introduced a method for calculating these terms.
Replace our system of interacting electrons with a ficticious system of
non-interacting electrons of the same density.
Represent by set of ficticious orbitals φi(r) with density given by

n(r) =

occ
∑

i

|φi(r)|2

and introduce effective Hamiltonian

[

−1

2
∇2 + V̂ext({RI}, r) + V̂H(r) + v̂xc(r)

]

φn(r) = Enφn(r)

• Kinetic energy of non-interacting system is given by:

EK [n(r)] = −1

2

∫

dr φ∗i (r)∇2φi(r)

Use this as approximation for kinetic energy functional (defined implicitly via
non-interacting effective Hamiltonian).
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• Exchange-correlation potential given by functional derivative.

v̂xc =
δExc[n(r)]

δn

and contains all remaining “uncertainty” about F [n(r)]. By comparison with
Hartree-Fock effective Hamiltonians, this must include (a) Exchange energy, (b)
Correlation energy and (c) the difference between kinetic energies of
non-interacting and interacting systems.

• All we have done so far is swept our ignorance of the form of F [n(r)] into one
single term. How does this help?

•

Exchange is small contribution, correlation
even smaller. Therefore a reasonable ap-
proximation to Exc is a very good approx-
imation to F .

• Although Kohn-Sham DFT uses effective Hamiltonian very reminiscent of
Hartree-Fock, no claim at all is made about the form of wavefunction.
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• DFT would be an exact theory of the ground state if we knew Exc[n(r)].
• Make (approximate) assumption that

Exc[n(r)] =

∫

dr n(r)εxc(n(r))

where εxc(n(r)) is the XC energy density at point r and is a function, not a
functional of n.

• This helps because we have available the exact form of εxc(n(r)) in the case of
a uniform electron gas, from highly accurate quantum monte-carlo calculations.
[ The exchange part of this εx(n(r)) varies as n1/3 ]

• It’s not obvious that the LDA should be any good. The usefulness was not
initially appreciated and it was virtually ignored for 10 years!

• Nevertheless DFT with LDA gives a highly satisfactory account of chemical
bonding in solids, molecules, surfaces and defects.
Less satisfactory for atoms - errors of 2eV or more. Band gaps too low.

• Generalized Gradient Approximation (GGA): Vxc(r) = Vxc(n, |∇n|) depends
also on local gradient of n.

• See R. O. Jones and O. Gunnarsson Rev. Mod. Phys. (1989) 61(3) 689-745, Ihm, Rep.

Prog. Phys. (1988) 51 105-142.
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1/wavelength

E
n

er
g

y

Ψ

phase

Atoms Discrete energy levels
Diatomic Each atomic level splits into bonding and antibonding states.
Molecule Molecular orbitals at many energy levels
Crystal Continuum of energy levels of same symmetry called bands
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• 3D vector space of k called reciprocal space
(1/λ).

• “real” and “reciprocal” spaces related by
Fourier Transform

• Fourier Transform of crystal lattice is called
reciprocal lattice and denoted by reciprocal
lattice vectors a

∗,b∗,c∗,
a
∗ = 2π

Ω
b× c etc.

• “unit cell” of reciprocal space called Bril-
louin Zone - periodically repeated it fills
reciprocal space.

• Electronic states φm,k with k within BZ
form complete description of all electronic
states in infinite crystal.
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• KS eigenvalues ǫmk gives rise to
band structure

• Electrons fill lowest energy states
according to Aufbau principle.

• Energy bands in molecular solid
have low dispersion and can be
mapped 1-1 onto molecular energy
levels.

• Quantum number m in molecular
solid corresponds to state label in
molecule.

Example: Benzene, Phase III

1/2,0,0
1/2,0,1/2
0,0,1/2
0,0,0
1/2,1/2,0
1/2,1/2,1/2
0,0,1/2
0,1/2,1/2
0,1/2,0
0,0,0

-8

-6

-4

-2

0

2

4

6

8

ε 
(e

V
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• Same principles apply as for molecular solids
• Energy above highest occupied state and below lowest unoccupied state called

Fermi energy

Γ K X Γ M
-5

0

5

10
ε 

(e
V

)

Insulator (MnO2)
Bands completely occupied or unoccupied.
Fermi energy lies in band-gap and divides
(valence bands) from (conduction bands)

Γ X Γ L W X

0

10

20

30

40

ε 
(e

V
)

Metal(Al)
Conduction bands partially occupied,
crossed by Fermi level.
In 3D filled states define Fermi surface
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• Need to compute ground state energy, not just bandstructure. Given by

E =

Nocc
∑

i

∫

dr φ∗i (r)∇2φi(r) +

∫

dr Vext(r)n(r)

+
1

2

∫ ∫

drdr′ n(r)n(r′)

|r′ − r| + Exc[n(r)] + EII({RI})

• The aufbau principle is implicit in DFT formalism. Each occupied KS orbital
contains 2 “electrons”, so Nocc = Ne/2. Density is

n(r) =

Nocc
∑

i

|φi(r)|2

• KS Orbitals subject to orthogonality and normalization conditions

∫

dr φ∗i (r)φj(r) = δij

• Integrals run over all 3D space, KE term is not cell-periodic.
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• Additional term EII({RI}) is usual electrostatic interaction energy between
ions. Computed in usual way, using Ewald Sum for periodic systems.
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• Assuming we have some scheme to generate KS orbitals and energy, we will
also need to evaluate forces acting on ions. (Numerical derivatives of E
inadequate and expensive.)

• Forces given by derivative of total energy

FIα = − dE

dRIα
= − ∂E

∂RIα
−

∑

i

δE

δφi

∂φi

∂RIα
−−

∑

i

δE

δφ∗i

∂φ∗i
∂RIα

• The Hellman-Feynman theorem allows easy calculation of forces. Provided that
the φi are eigenstates of the Hamiltonian the second two terms vanish.

• In plane-wave basis the only terms which depend explicitly on ionic co-ordinates
are the external potential and EII({RI}).

FI = −
∫

dr
dVext

dRI
n(r)− dVII

dRI

The ions feel only the electrostatic forces due to the electrons and the other
ions.

• In atom-centred basis (LAPW, GTO, etc) additional terms in force from
derivative of orbital basis wrt ionic position - “Pulay forces”.
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• Periodic boundary conditions necessary for same reasons as with parameterized
potentials.
Vext(r + T ) = Vext(r)
where T is a lattice translation of the simulation cell.

• observables must also be periodic in simulation cell, so
n(r + T ) = n(r)

• wavefunctions are NOT observable so φ(r) are NOT cell-periodic.
• can multiply φ by arbitrary complex function c(r) with |c| = 1.
• Bloch’s Theorem gives form of wavefunctions in periodic potential (see any

solid state physics text for proof).
φk(r + T ) = exp(ik.T )φk(r)
φk(r) = exp(ik.r)uk(r)
where uk(r) is a periodic function u(r + T ) = u(r)

• The Bloch functions u(r) are easily representable on a computer program,
unlike φ(r).

• Bloch states have 2 labels, eigenstate m and wavevector k.
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• Smallest geometric volume with full space-
group symmetry and which can be periodically
repeated to fill wavevector space reciprocal-
space known as Brillouin Zone.

• Kinetic energy term in total energy rewritten in
terms of Bloch functions

T =

∫

BZ
dk

∫

Ω
dr u∗

k
(r) (−i∇+ k)2 uk(r)

∫

Ω is over one cell rather than all space.

• Charge density can also be expressed in terms of uk(r).

n(r) =
∑

m

∫

BZ
dk u∗mk

(r)umk(r)

• All terms in Hamiltonian now expressed in terms of cell-periodic quantities.
Need only store values of umk(r) for a single simulation cell in computer
representation.
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• In a real calculation re-
place integral

∫

bz dk with
sum over discrete set of
wavevectors

∑BZ
k (“k-

points”).
• In practice, use points on

a regular grid for 3d inte-
gration (Monkhorst and
Pack, Phys. Rev. B

13,5188 (1976)
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Example Integration

• Fineness of grid is a convergence parameter. Number needed for convergence
varies inversely with simulation cell volume.

• In metals, where bands are partially filled, need much finer k-point grid spacing
to represent fermi surface.
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Numerical representation of orbitals /
wavefunctions on computer should be

• compact
• efficient
• accurate

Simple discretization insufficiently accu-
rate derivatives needed to compute K.E:
−∇2φ
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• Need way of representing KS orbitals (in fact the Bloch functions umk(r)) in
the computer.

• Usually represent as sum of selected basis functions

umk(r) =

Nf
∑

i=1

cmk,ifi(r)

• fi(r) chosen for convenience in evaluating integrals, which are rewritten
entirely in terms of coefficients cmk,i.

• Basis functions form a finite set (Nf ), so number of coefficients cmk,i is finite
and can be stored in computer.

• Truncation of basis set to Nf members constitutes an approximation to Bloch
functions. Nf is another convergence parameter.

• K-S or H-F Hamiltonians take form of matrix of basis coefficients and equations
become matrix-eigenvalue equations

Hk,ijcmk,j = ǫmkcmk,i

and possible computer algorithms to solve them are suggested.
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ψi(r) =
∑

jlm

Cij,lme
−αir

2
Ylm(r̂)

Pros

• Compact: only small number of Cij,lm needed
• Integrals (needed to evaluate Hamiltonian) are analytic
• Huge literature describing sets of diverse quality.

Cons

• Over complete: risk of linear dependence
• Non-orthogonal: overlap gives risk of Basis Set Superposition Error
• Awkward to systematically improve - somewhat of a dark art - experience

needed.
• Need to master arcane terminology, 3-21G, 6-21G∗∗,

”double-zeta+polarization”, ”diffuse”
• Atom-centred ⇒ difficult ”Pulay” terms in forces, stresses and force-constants.
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ψi(r) =
∑

lm

flm(r)Ylm(r̂)

where flm is stored on a radial numerical grid. e.g. DMOL, FHI-Aims, SIESTA
Pros

• Better completeness than with Gaussians.

Cons

• Integrals must be evaluated numerically
• Harder to control integration accuracy
• Harder to evaluate kinetic energy accurately.
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ψi,k(r) =

|G|<Gmax
∑

G

cik,Ge
i(k+G).r)

Pros

• Fourier Series expansion of ψ(r) : Fourier coefficients cik,G stored on regular
grid of G.

• Can use highly efficient FFT algorithms to transform between r-space and
G-space representations.

• O(N2) scaling of CPU time and memory allows for 100s of atoms.
• Complete and Orthonormal. No BSSE or linear dependence.
• Simple to evaluate forces, stresses and force-constants.
• Not atom-centred ⇒ unbiassed
• Systematically improvable to convergence with single parameter Gmax.

Cons

• Very large number of basis coefficients needed (10000 upwards). Impossible to
store Hamiltonian matrix.

• Sharp features and nodes of ψ(r) of core electron prohimitively expensive to
represent ⇒ need pseudopotentials

• Vacuum as expensive as atoms.
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GTOs “Gaussian-type orbitals” Very widely used in molecular calculations, also
periodic because integrals are analytic and can be tabulated. Atom-centering can
be a disadvantage, giving rise to additional terms in forces and biassing the
calculation. Only small numbers of basis functions needed per atom.

STOs: “Slater-type orbitals” atom-centered but uses eigenfunctions of atomic
orbitals.

MTOs: “Muffin-Tin orbitals”. Atom centred using eigenfunctions in
spherically-symmetric, truncated potential (muffin-tin).

Plane Waves: Very widely used in solid-state calculations.
Formally equivalent to a Fourier series. Can use powerful Fourier methods
including FFTs to perform integrals. Ideally suited to periodic system. Unbiassed
by atom position. Systematically improvable convergence by increasing Gmax.

APW “Augmented Plane Waves” a mixed basis set of spherical harmonics centred
on atoms and plane-waves in interstitial region. LAPW methods highly accurate
but restricted to small systems.
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• See M. Payne et al Rev. Mod. Phys. 64, (1045) 1992
• Expressed in terms of plane-wave coefficients cmk(G) the total KS energy is

EKS =
∑

k

∑

m

∑

G

|G+ k|2|cmk(G)|2 +
∑

G 6=0

Vext(G)n(G)

+
∑

G 6=0

|n(G)|2
|G|2 +

∫

drn(r)εxc(n(r)) + EII({RI})

There are only single sums over G or r which can therefore be evaluated in
O(NG) operations.

•
∑

G
runs over all |G+ k| < Gmax. Assuming that cmk(G) decreases rapidly

with G, accuracy can be systematically improved by increasing Gmax.
• It is common to quote plane-wave cutoff energy

Ec =
h̄2G2

max

2me

instead of Gmax.



The FFT Grid

Introduction

Quantum-mechanical
approaches

Density Functional
Theory

Electronic Structure of
Condensed Phases

Total-energy calculations

Basis sets

Plane-waves and
Pseudopotentials

Plane-wave basis sets

The FFT Grid
Advantages and
disadvantages of
plane-waves

Pseudopotentials

Pseudopotentials II

Pseudopotential
Technicalities
Ultrasoft
Pseudopotentials

Ultrasoft
Pseudopotentials

Ultrasoft
Pseudopotentials

Ultrasoft
Pseudopotentials

More Projectors

How to solve the
equations

Parallel Materials Modelling Packages @ EPCC 41 / 55

• Store cmk(G) and n(r) on 3-dimensional grid, and can use FFTs to map
between real and reciprocal-space. Example, density n(r) constructed as
n(r) =

∑

k

∑occ
m |umk(r)|2 where umk(r) =

∑

G
cmk(G) exp(iG.r)

which requires 1 FFT for each band and k-point to transform umk(G) into
real-space. To compute Hartree and local, potential terms, we need
n(G) =

∑

r n(r) exp(−iG.r)
• Need twice maximum grid dimension to store charge density as orbitals.

Nuts and Bolts 2001 Lecture 6: Plane waves etc. 11

The FFT Grid

2Gmax

grid_scale

*2Gmax

≈ 4Gmax
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• Can systematically improve
basis set to full or desired level
of convergence.

• Unbiassed basis set, indepen-
dent of nature of bonding.

• Highly efficient Fourier meth-
ods available for implementa-
tion.

• O(N2) scaling of CPU time
and memory allows for 100s of
atoms.

• Many plane-waves needed to
model rapid variations in elec-
tron density.

• Vacuum as expensive as
atoms.
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• Steep ionic potential
V (r) = −Ze

r
near

ion causes rapid oscil-
lations of φ(r).

• High-frequency
Fourier components
need very high energy
plane-wave cutoff.

• Filled shells of core
electrons are unper-

turbed by crystalline
environment. All
chemical bonding in-
volves valence elec-

trons only.
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• Replace strong ionic potential with
weaker pseudopotential which gives
identical valence electron wavefunc-
tions outside core region, r > rc. This
gives identical scattering properties.

• Pseudo-wavefunction has no nodes for
r < rc unlike true wavefunction.

• Smooth φpseudo can be represented

with few plane waves.
• Pseudopotentials imply the Frozen

Core approximation
• Ab-initio pseudopotentials are calcu-

lated from all-electron DFT calcula-
tions on a single atom.

• Can be calculated using relativistic

Dirac equation incorporating relativ-
ity of core electrons into PSP. Valence
electrons usually non-relativistic.

Vps

Ψps
Ψv

rc�
�
�
�

Z/r

r
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• Simple “local” potential VPS(r) insufficient for ac-
curate description of most elements.

• Almost always use nonlocal pseudopotential oper-
ator

VPS =
∑

l,m

|Ylm > Vl(r) < Ylm|

where |Ylm > are spherical harmonics of angular
momentum l.

• Several prescriptions to generate pseudopoten-
tials; Hamman-Schluter,Chang, Kerker, Trouiller-
Martins,Optimised (Rappe), Vanderbilt.

• Additional technicalities lead to norm-conserving

vs ultrasoft.
• Goal has been to get “smoothest” pseudo-

wavefunctions to reduce plane-wave cutoff energy.
Vanderbilt ultrasoft pseudopotentials give lowest
cutoff energies and high accuracy. 0 1 2 3 4
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✬

✫

✩

✪

• Norm conservation ⇒ nodeless 2p, 3d, 4f
states inevitably hard

• Vanderbilt [PRB 41,7892(1990)] relax norm-
conservation.

V̂ NL
I =

∑

jk

Djk |βj〉 〈βk|

with
Djk = Bjk + ǫjqjk

and

Qjk(r) = ψ∗,AE
j (r)ψAE

k (r)−φ∗,PSj (r)φPSk (r)

qjk =
〈

ψAE
j |ψAE

k

〉

−
〈

φPSj |φPSk
〉

=

∫ rc

0
Qjk(r)dr

• Qjk(r) are augmentation functions 0 1 2
r (Bohr)

Fe 3d USP
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With overlap operator Ŝ defined as

Ŝ = 1̂ +
∑

jk

qjk |βj〉 〈βk|
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With overlap operator Ŝ defined as

Ŝ = 1̂ +
∑

jk

qjk |βj〉 〈βk|

orthonormality of ψAE ⇒ S-orthonormality of ψPS

〈

ψAE
j |ψAE

k

〉

=
〈

φPSj

∣

∣

∣
S
∣

∣

∣
φPSk

〉

= δjk
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With overlap operator Ŝ defined as

Ŝ = 1̂ +
∑

jk

qjk |βj〉 〈βk|

orthonormality of ψAE ⇒ S-orthonormality of ψPS

〈

ψAE
j |ψAE

k

〉

=
〈

φPSj

∣

∣

∣
S
∣

∣

∣
φPSk

〉

= δjk

The density aquires additional augmentation term

n(r) =
∑

i

|φi(r)|2 +
∑

jk

ρjkQjk(r); ρjk =
∑

i

〈φi|βj〉 〈βk|φi〉
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With overlap operator Ŝ defined as

Ŝ = 1̂ +
∑

jk

qjk |βj〉 〈βk|

orthonormality of ψAE ⇒ S-orthonormality of ψPS

〈

ψAE
j |ψAE

k

〉

=
〈

φPSj

∣

∣

∣
S
∣

∣

∣
φPSk

〉

= δjk

The density aquires additional augmentation term

n(r) =
∑

i

|φi(r)|2 +
∑

jk

ρjkQjk(r); ρjk =
∑

i

〈φi|βj〉 〈βk|φi〉

The K-S equations are transformed into generalised eigenvalue equations

Ĥφi = ǫiŜφi
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With overlap operator Ŝ defined as

Ŝ = 1̂ +
∑

jk

qjk |βj〉 〈βk|

orthonormality of ψAE ⇒ S-orthonormality of ψPS

〈

ψAE
j |ψAE

k

〉

=
〈

φPSj

∣

∣

∣
S
∣

∣

∣
φPSk

〉

= δjk

The density aquires additional augmentation term

n(r) =
∑

i

|φi(r)|2 +
∑

jk

ρjkQjk(r); ρjk =
∑

i

〈φi|βj〉 〈βk|φi〉

The K-S equations are transformed into generalised eigenvalue equations

Ĥφi = ǫiŜφi

What gain does this additional complexity give?
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• φPS can be made much smoother by dropping norm-conservation.
• Charge density restored by augmentation.
• Transferrability restored by use of 2 or 3 projectors for each l
• Quantities qjk, Bjk are just numbers and |βj(r)〉 required to construct Ŝ are

similar to norm-conserving projectors.
• Only functions Qjk(r) have fine r-dependence, and they only appear when

constructing augmented charge density.
• Everything except Qjk(r) easily transferred from atomic to grid-based plane

wave code.
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• φPS can be made much smoother by dropping norm-conservation.
• Charge density restored by augmentation.
• Transferrability restored by use of 2 or 3 projectors for each l
• Quantities qjk, Bjk are just numbers and |βj(r)〉 required to construct Ŝ are

similar to norm-conserving projectors.
• Only functions Qjk(r) have fine r-dependence, and they only appear when

constructing augmented charge density.
• Everything except Qjk(r) easily transferred from atomic to grid-based plane

wave code.
• Vanderbilt USP ⇒ pseudize Qjk(r) at some rinner ≈ rc/2, preserving norm and

higher moments of charge density.
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• φPS can be made much smoother by dropping norm-conservation.
• Charge density restored by augmentation.
• Transferrability restored by use of 2 or 3 projectors for each l
• Quantities qjk, Bjk are just numbers and |βj(r)〉 required to construct Ŝ are

similar to norm-conserving projectors.
• Only functions Qjk(r) have fine r-dependence, and they only appear when

constructing augmented charge density.
• Everything except Qjk(r) easily transferred from atomic to grid-based plane

wave code.
• Vanderbilt USP ⇒ pseudize Qjk(r) at some rinner ≈ rc/2, preserving norm and

higher moments of charge density.
• Blöchl PAW ⇒ add radial grids around each atom to represent Qjk(r) and

naug(r)
• In PW code add 2nd, denser FFT grid for naug(r) (and VH(r) - specified by

parameter fine grid scale.
• Set fine grid scale= 2..4 depending on rc and rinner; good guess is rc/rinner
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• logarithmic derivative ( d
dr

log φ(r)) vs energy plots are guide to transferrability.
• 2 projectors ⇒ superior transferrability.
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• K-S Hamiltonian is effective
Hamiltonian as Hartree term
depends on electron density n(r).
But density depends on orbitals,
which in turn are eigenvectors of
Hamiltonian.

• Need to find self-consistent solu-
tion where cmk,i are eigenvalues
of Hamiltonian matrix whose elec-
tron density is constructed from
cmk,i.

• In practice never converges.

density n(r)
Choose initial

Construct
Hamiltonian

Hij

Eigenvalues
Converged?

Construct new

density n(r)

Finished
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• Convergence may be stabilised by
mixing fraction of “new” density
with density from previous itera-
tion.

• Variety of more sophisticated mix-
ing algorithms available, due to
Pulay, Kerker, Broyden.

• Commonly used in Quantum
Chemistry, LAPW, LMTO,
LCAO-GTO codes with small
basis set.

• A plane-wave basis set contains
10,000+ coefficients ⇒ Hij is far
too large to store.

• Don’t actually construct Hij ;
use iterative solver to find only
lowest-lying eigenvalues of occu-
pied states(plus a few extra).

Construct

Finished

mix densities

Choose initial
density n(r)

Hamiltonian
Hij

Eigenvalues
Converged?

Construct new

density n′(r)

n(n+1) = (1 − β)n(n) + βn′
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• Instead of solving matrix eigenvalue problem, exploit variational character of
total energy.

• Ground-state energy is function of plane-wave coefficients cmk(G) the total
energy KS is

E =
∑

k

∑

m

∑

G

|G+ k|2|cmk(G)|2 +
∑

G 6=0

Vext(G)n(G)

+
∑

G 6=0

|n(G)|2
|G|2 +

∫

drn(r)εxc(n(r)) + EII({RI})

• Vary coefficients to minimize energy using conjugate-gradient or other
optimization methods subject to constraint that orbitals are orthogonal

∑

G

c∗mk
(G)cnk(G) = δmn

• Can vary one band at a time, or all coefficients simultaneously, giving a
all-bands method. See M. Payne et al Rev. Mod. Phys. 64, 1045 (1992); M.
Gillan J. Phys Condens. Matt. 1 689-711 (1989)
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• Hartree-Fock approximation to many-body QM. Exchange.
• Density Functional Theory: Kohn-Sham methods,.
• LDA and GGA approximations to exchange-correlation energy.
• Electrons in periodic boundary conditions; reciprocal space and Brillouin-Zones.
• Band-structure in solids
• Basis sets – atomic and plane-wave
• Pseudopotentials
• SCF methods.
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