
Parallel Programming 
Libraries and implementations 



Outline 
• MPI – distributed memory de-facto standard 

•  Using MPI 
• OpenMP – shared memory de-facto standard 

•  Using OpenMP 
• CUDA – GPGPU de-facto standard 

•  Using CUDA 
• Others 

•  Hybrid programming 
•  Xeon Phi Programming 
•  SHMEM 
•  PGAS 



MPI Library 
Distributed, message-passing programming 



Message-passing concepts 



Explicit Parallelism 
•  In message-passing all the parallelism is explicit 

•  The program includes specific instructions for each communication 
•  What to send or receive 
•  When to send or receive 
•  Synchronisation 

•  It is up to the developer to design the parallel 
decomposition and implement it 
•  How will you divide up the problem? 
•  When will you need to communicate between processes? 



Message Passing Interface (MPI) 
•  MPI is a portable library used for writing parallel programs 

using the message passing model 
•  You can expect MPI to be available on any HPC platform you use 

•  Based on a number of processes running independently in 
parallel 
•  HPC resource provides a command to launch multiple processes 

simultaneously (e.g. mpiexec, aprun) 
•  There are a number of different implementations but all should 

support the MPI 2 standard 
•  As with different compilers, there will be variations between 

implementations but all the features specified in the standard should 
work. 

•  Examples: MPICH2, OpenMPI 



Point-to-point communications 
• A message sent by one process and received by another 
• Both processes are actively involved in the 

communication – not necessarily at the same time 
• Wide variety of semantics provided: 

•  Blocking vs. non-blocking 
•  Ready vs. synchronous vs. buffered 
•  Tags, communicators, wild-cards 
•  Built-in and custom data-types 

• Can be used to implement any communication pattern 
•  Collective operations, if applicable, can be more efficient 



Collective communications 
• A communication that involves all processes 

•  “all” within a communicator, i.e. a defined sub-set of all processes 
• Each collective operation implements a particular 

communication pattern 
•  Easier to program than lots of point-to-point messages 
•  Should be more efficient than lots of point-to-point messages 

• Commonly used examples: 
•  Broadcast 
•  Gather 
•  Reduce 
•  AllToAll 



Example: MPI HelloWorld 
int	  main(int	  argc,	  char*	  argv[])	  
{	  
	  	  	  int	  size,rank;	  
	  
	  	  	  MPI_Init(&argc,	  &argv);	  
	  	  	  MPI_Comm_size(MPI_COMM_WORLD,	  &size);	  
	  	  	  MPI_Comm_rank(MPI_COMM_WORLD,	  &rank);	  
	  
	  	  	  printf("Hello	  world	  -‐	  I'm	  rank	  %d	  of	  %d\n",	  rank,	  size);	  

	  	  MPI_Finalize();	  
	  	  return	  0;	  
}	  



OpenMP 
Shared-memory parallelism using directives 



Shared-memory concepts 
•  Threads “communicate” by having access to the same 

memory space 
•  Any thread can alter any bit of data 
•  No explicit communications between the parallel tasks 



OpenMP 
• OpenMP is an Application Program Interface (API) for 

shared memory programming 
•  You can expect OpenMP to be supported by all compilers on all 

HPC platforms 

• Not a library interface like MPI 
•  You interact through directives in your program source rather than 

calling functions/subroutines 

• Parallelism is less explicit than MPI 
•  You specify which parts of the program you want to parallelise and 

the compiler produces a parallel executable 



Loop-based parallelism 
•  The most common form of OpenMP parallelism is to 

parallelise the work in a loop 
•  The OpenMP directives tell the compiler to divide the iterations of 

the loop between the threads 

#pragma	  omp	  parallel	  shared(a,b,c,chunk)	  private(i)	  
{	  
	  	  	  #pragma	  omp	  for	  schedule(dynamic,chunk)	  nowait	  
	  	  	  for	  (i=0;	  i	  <	  N;	  i++)	  {	  
	  	  	  	  	  c[i]	  =	  a[i]	  +	  b[i];	  
	  	  	  }	  
}	  



CUDA 
Programming GPGPU Accelerators 



CUDA 
• CUDA is an Application Program Interface (API) for 

programming NVIDIA GPU accelerators 
•  Proprietary software provided by NVIDIA. Should be available on 

all systems with NVIDIA GPU accelerators 
•  Write GPU specific functions called kernels 
•  Launch kernels using syntax within standard C programs 
•  Includes functions to shift data between CPU and GPU memory 

• Similar to OpenMP programming in many ways in that the 
parallelism is implicit in the kernel design and launch 

• More recent versions of CUDA include ways to 
communicate directly between multiple GPU accelerators 
(GPUdirect) 



Example: 
//	  CUDA	  kernel.	  Each	  thread	  takes	  care	  of	  one	  element	  of	  c	  
__global__	  void	  vecAdd(double	  *a,	  double	  *b,	  double	  *c,	  int	  n)	  
{	  
	  	  	  	  //	  Get	  our	  global	  thread	  ID	  
	  	  	  	  int	  id	  =	  blockIdx.x*blockDim.x+threadIdx.x;	  
	  	  
	  	  	  	  //	  Make	  sure	  we	  do	  not	  go	  out	  of	  bounds	  
	  	  	  	  if	  (id	  <	  n)	  
	  	  	  	  	  	  	  	  c[id]	  =	  a[id]	  +	  b[id];	  
}	  
	  
//	  Called	  with	  
vecAdd<<<gridSize,	  blockSize>>(d_a,	  d_b,	  d_c,	  n);	  



Others 
Niche and future implementations 



Other parallel implementations 
• Partitioned Global Address Space (PGAS) 

•  Coarray Fortran, Unified Parallel C, Chapel 

• Cray SHMEM, OpenSHMEM 
•  Single-sided communication library  

• OpenACC 
•  Directive-based approach for programming accelerators 



Example: Running Parallel Programs 
• Here is a simple example of a PBS script for that: 

•  sets the shell to /bin/bash 
•  names the job "Weather1" 
•  limits the run time of the job to one wall hour 
•  and then runs the MPI executable ./weathersim on 4096 cores 

 
#!/bin/bash	  –login	  
#PBS	  -‐N	  Weather1	  
#PBS	  -‐l	  select=171	  
#PBS	  -‐l	  walltime=1:00:00	  
cd	  $PBS_O_WORKDIR	  
aprin	  –n	  4096	  ./weathersim	  



Summary 



Parallel Implementations 
• Distributed memory programmed using MPI 
• Shared memory programmed using OpenMP 
• GPU accelerators programmed using CUDA 

• Hybrid programming approaches (e.g. MPI/OpenMP) are 
becoming more common 
•  They match the hardware layout more closely 

• A number of other, more experimental approaches are 
available 


