HPC Architectures

Types of resource currently in use

Outline

- Shared memory architectures
- Distributed memory architectures
- Distributed memory with shared-memory nodes
- Accelerators
- What is the difference between different Tiers?
 - Interconnect
 - Software
 - Job-size bias (capability)

Shared memory architectures

Simplest to use, hardest to build

Symmetric Multi-Processing Architectures

All cores have the same access to memory

Non-Uniform Memory Access Architectures

Cores have faster/wider access to local memory

Shared-memory architectures

- Most computers are now shared memory machines due to multicore
- Some true SMP architectures...
 - e.g. BlueGene/Q nodes
- ...but most are NUMA
 - Program NUMA as if they are SMP details are hidden from the user.
- Difficult to build shared-memory systems with large core numbers (> 1024 cores)
 - Expensive and power hungry
 - Some systems manage by using software to provide sharedmemory capability

Distributed memory architectures

Clusters and interconnects

Distributed-Memory Architectures

Distributed-memory architectures

- Each self-contained part is called a node.
- Almost all HPC machines are distributed memory in some way
 - Although they all tend to be shared-memory within a node.
- The performance of parallel programs often depends on the *interconnect* performance
 - Although once it is of a certain (high) quality, applications usually reveal themselves to be CPU, memory or IO bound
 - Low quality interconnects (e.g. 10Mb/s 1Gb/s Ethernet) do not usually provide the performance required
 - Specialist interconnects are required to produce the largest supercomputers. *e.g.* Cray Aries, IBM BlueGene/Q

inant on smaller systems.

Distributed/shared memory hybrids

Almost everything now falls into this class

Hybrid Architectures

NIVA

Hybrid architectures

- Almost all HPC machines fall in this class
- Most applications use a message-passing (MPI) model for programming
 - Usually use a single process per core
- Increased use of hybrid message-passing + shared memory (MPI+OpenMP) programming
 - Usually use 1 or more processes per NUMA region and then the appropriate number of shared-memory threads to occupy all the cores
- Placement of processes and threads can become complicated on these machines

Example: ARCHER

ARCHER has two 12-way multicore processors per node

- Each 12-way processor is made up of two 6-core dies
- Each node is a 24-core, shared-memory, NUMA machine

Accelerators

How are they incorporated?

Including accelerators

- Accelerators are usually incorporated into HPC machines using the hybrid architecture model
 - A number of accelerators per node
 - Nodes connected using interconnects
- Communication from accelerator to accelerator depends on the hardware:
 - NVIDIA GPU support direct communication
 - AMD GPU have to communicate via CPU memory
 - Intel Xeon Phi communication via CPU memory
 - Communicating via CPU memory involves lots of extra copy operations and is usually very slow

Comparison of types

What is the difference between different tiers?

HPC Facility Tiers

 HPC facilities are often spoken about as belonging to Tiers

Summary

- Vast majority of HPC machines are shared-memory nodes linked by an interconnect.
 - Hybrid HPC architectures combination of shared and distributed memory
- Most are programmed using a pure MPI model (more later on MPI).
 - Does not really reflect the hardware layout
- Shared HPC machines span a wide range of sizes:
 - From Tier 0 Multi-petaflops (1 million cores)
 - To workstations with multiple CPUs (+ Accelerators)

