Building Blocks

Operating Systems, Processes, Threads

Outline

What does an Operating System (OS) do?
OS types in HPC
The Command Line

Processes
Threads

Threads on accelerators

OS performance optimisation
Why is the OS bad for performance?
Approaches to improving OS performance

epcc

Operating Systems

What do they do? Which ones are used for HPC?

\NIVE
» 9
|,T < N A
a C e CC B S2 R
I I . ~El .
e NO% z
- ~ o
J- X
ra S
DTN

.
Operating System (OS)

The OS is responsible for orchestrating access to the
hardware by applications.

Which cores is an application running on?

How is the memory allocated and de-allocated?

How is the file-system accessed?

Who has authority to access which resources?

How do we deal with oversubscription (e.g. more applications

running than cores available).
Running applications are controlled through the concepts
of processes and threads.

epcc

-
OS's for HPC

HPC sector is dominated by Linux (of various flavours)

Most HPC vendors modify a commercial Linux distro (RedHat or
SUSe) and tailor to their own system.

Many commodity clusters run a free Linux distro (Scientific Linux is
particularly popular).

Only IBM Power systems still use UNIX (AIX)
11 HPC systems in the November 2013 Top500 list use UNIX

Windows HPC is used on a small number of HPC
systems
2 HPC systems in the November 2013 Top500 list use Windows

epce

The Command Line

HPC sector is dominated by Linux

Interaction is almost always through the Linux command
line.

Often a reasonably large barrier to new people adopting HPC.
For any serious use of HPC you will have to learn to use

the command line.

Knowledge is often useful for using the command line on your own
laptop/PC

You should also learn the basic operation of an in-terminal text
editing program — “vi” is probably the simplest to learn and is

available everywhere.

epce

Processes

\NIVE
» 9
Y ~7 | €
archer e DCC| &9
. ~El .
NO%)z
b £ &
OrNBY

Processes

Each application is a separate process in the OS

A process has its own memory space which is not accessible by
other running process.

Each process is scheduled to run by the OS — it can be tied to a
particular core or can be migrated between cores

' | lepcc

Process Scheduling

The OS has responsibility for interrupting a process and
granting the core to another process
Which process is granted access is determined by the scheduling
policy
Interrupt happens at regular intervals (every 0.01seconds is typical)
Process selected should have processing work to do

Hardware can support scheduling of multiple processes
Known as Symmetric Multi-threading (SMT)

Usually appears to the OS as an additional core to use for
scheduling

Process scheduling can be a hindrance to performance

epce

Threads

Sharing memory

\NIVE
» 9
|_. e Y ~7 | €
a C e CC B 52 :
I I . ~El .
NO% z
- ~ o
J- X
& S
DTN

e
Threads

For many applications each process has a single thread...

...but with the advent of multicore processors it is
becoming more common for a process to contain multiple
threads P,

2
-
<

~

epce

.
Threads (cont.)

All the threads in a process have access to the same
memory
Can operate in parallel on the same data to speed up applications
Can have threads operating asynchronously (often used in GUIs)

OS scheduling policy is aware of threads
Usually scheduled as one thread per core but not a requirement

Switching between threads is usually a bit quicker than switching
between processes

epce

Threads and Accelerators

The Accelerator programming model generally requires a
huge number of threads to provide efficient usage
Oversubscription of the accelerator by threads is encouraged
Hardware supports fast switching of execution of threads
As GPGPUs can have 1000’s of computing elements,
oversubscription can be difficult!
Threading is becoming more and more important on
modern HPC machines

epcc

OS Optimisation

How do vendors get performance?

\NIVE
» 9
< N A
archer epCCl 8
. ~El .
NO%)z
b £ &
DTN

.
Compute node OS

On the largest supercomputers the compute nodes often
run an optimised OS to improve performance

Interactive (front-end) nodes usually run a full OS

Often means that you are cross-compiling

How is the OS optimised?
Remove features that are not needed (e.g. USB support)
Restrict scheduling flexibility and increase interrupt period
Remove support for virtual memory (paging)

epcc

