CPOCC

Sharpen Exercise: Using HPC resources and running parallel
applications

21 April 2014

Contents
I_Aims 1
2__Introduction| 2
i3 Instructions| 2
[3.1 Loginto ARCHER frontend nodes and run commands| 2
3.1.1 Procedure for Mac and Linuxusers| 2
3.1.2 Procedure for Windows users| oo 3
[3.2 Running commands|. 3
[3.3 Using the Emacs texteditor]. 3
[3.4 Useful commands for examining files| 4
3.5 _Download and extract the exercise files|. 5
[3.6 Compile the source code to produce an executable file. 6
[3.7 Runningajob| 7
[3.7.1 Wrtethe PBSjobscriptl L 7
[3.7.2 Submit the script to the PBS job submission system|. 8
[3.7.3 Monitoring/deleting your batchjob| o o000 8
[3.7.4 Finding theoutput] 8
[3.8 Viewing theimages| 9

1 Aims

The aim of this exercise is to get you used to logging into a HPC resource, using the command line and an
editor to manipulate files, and using the batch submission system.

In this exercise we will be using ARCHER. ARCHER is the UK national HPC service, and is a Cray XC30
system with a total of 72,192 cores (3008 nodes).

1

You can find more details on ARCHER and how to use it in the User Guide at:

e http://www.archer.ac.uk/documentation/user-guide/

2 Introduction

In this exercise you will run a simple parallel program to sharpen the provided image.

Using your provided guest account, you will:

1.
2
3
4.
5
6

7.

log onto the ARCHER frontend nodes;

. copy the source code from a central location to your account;

. unpack the source code archive;

compile the source code to produce an executable file;

. submit a parallel job using the PBS batch system;

. run the parallel executable on a compute node using a varying number of processors and examine the

performance difference.

submit an interactive job.

Demonstrators will be on hand to help you as required. Please do ask questions if you do not understand
anything in the instructions - this is what the demonstrators are here for.

3 Instructions

3.1

Log into ARCHER frontend nodes and run commands

You should have been given a guest account ID — referred to generically here as guestXX and password.
(If you have not, please contact a demonstrator.)

3.1.1 Procedure for Mac and Linux users

Open a command line Terminal and enter the following command:

local$ ssh —-X guestXX@login.archer.ac.uk
Password:

you should be prompted to enter your password.

http://www.archer.ac.uk/documentation/user-guide/

3.1.2 Procedure for Windows users

Windows does not generally have SSH installed by default so some extra work is required. You need to
download and install a SSH client application - PuTTY is a good choice:

o http://www.chiark.greenend.org.uk/Sgtatham/putty/

When you start PuTTY you should be able to enter the ARCHER login address (login.archer.ac.uk). When
you connect you will be prompted for your user ID and password.

3.2 Running commands

You can list the directories and files available by using the /s (LiSt) command:

guestXX@archer:~> 1s
bin work

NB: The first time you do this there will be no files or directories so ’Is” will return with an empty line.

You can modify the behaviour of commands by adding options. Options are usually letters or words pre-
ceded by ‘-’ or ‘~’. For example, to see more details of the files and directories available you can add the
‘-1’ (1 for long) option to Is:

guestXX@archer:~> 1ls -1

total 8

drwxr-sr—-x 2 user z01 4096 Nov 13 14:47 bin
drwxr—-sr—-x 2 user z01 4096 Nov 13 14:47 work

If you want a description of a particular command and the options available you can access this using the
man (MANual) command. For example, to show more information on Is:

guestXX@archer:~> man ls
Man: find all matching manual pages

* 1ls (1)
1s (1p)
Man: What manual page do you want?
Man:

In the manual, use the spacebar to move down a page, ‘u’ to move up, and ‘q’ to quit and exit back to the
command line.

3.3 Using the Emacs text editor

As you do not have access to a windowing environment when using ARCHER, Emacs will be used in in-
terminal mode. In this mode you can edit the file as usual but you must use keyboard shortcuts to run
operations such as “save file” (remember, there are no menus that can be accessed using a mouse).

Start Emacs with the emacs command and the name of the file you wish to create. For example:

guestXX@archer:~> emacs sharpen_batch.pbs

http://www.chiark.greenend.org.uk/~sgtatham/putty/

The terminal will change to show that you are now inside the Emacs text editor:

[NaNa) % aturner — ssh

(Hew File)

Typing will insert text as you would expect and backspace will delete text. You use special key sequences
(involving the Ctrl and Alt buttons) to save files, exit Emacs and so on.

Files can be saved using the sequence “Ctrl-x Ctrl-s” (usually abbreviated in Emacs documentation to “C-x
C-s”). You should see the following briefly appear in the line at the bottom of the window (the minibuffer
in Emacs-speak):

Wrote ./sharpen_batch.pbs

To exit Emacs and return to the command line use the sequence “C-x C-c”. If you have changes in the
file that have not yet been saved Emacs will prompt you (in the minibuffer) to ask if you want to save the
changes or not.

Although you could edit files on your local machine using whichever windowed text editor you prefer it is
useful to know enough to use an in-terminal editor as there will be times where you want to perform a quick
edit that does not justify the hassle of editing and re-uploading.

3.4 Useful commands for examining files

There are a couple of commands that are useful for displaying the contents of plain text files on the command
line that you can use to examine the contents of a file without having to open in in Emacs (if you want to

4

edit a file then you will need to use Emacs). The commands are cat and less. cat simply prints the contents
of the file to the terminal window and returns to the command line. For example:

guestXX@archer:~> cat sharpen_batch.pbs
aprun -n 4 ./sharpen

This is fine for small files where the text fits in a single terminal window. For longer files you can use the
less command. less gives you the ability to scroll up and down in the specified file. For example:

guestXX@archer:~> less sharpen.c

Once in less you can use the spacebar to scroll down and ‘u’ to scroll up. When you have finished examining
the file you can use ‘q’ to exit less and return to the command line.

3.5 Download and extract the exercise files

Firstly, change directory to make sure you are on the “/work” filesystem on ARCHER.

guestXX@archer:~> cd /work/yl4/yl4/guestXX/

/work is a high performance parallel file system that can be accessed by both the frontend and compute
nodes. All jobs on ARCHER should be run from the /work filesystem. ARCHER compute nodes cannot
access the /home filesystem at all. Any jobs attempting to use /home will fail with an error.

Use wget (on ARCHER) to get the exercise files archive from the EPCC webserver:

guestXX@eslogin003:~> wget tinyurl.com/archer230414/sharpen.tar.gz

--2014-04-21 15:06:57-- http://tinyurl.com/archer230414/sharpen.tar.gz

Resolving tinyurl.com... 64.62.243.92, 64.62.243.89, 64.62.243.90

Connecting to tinyurl.com|64.62.243.92|:80... connected.

HTTP request sent, awaiting response... 301 Moved Permanently

Location: http://www2.epcc.ed.ac.uk/~acollis/archer230414/sharpen.tar.gz [following]
--2014-04-21 15:06:58-- http://www2.epcc.ed.ac.uk/~acollis/archer230414/sharpen.tar.gz
Resolving www2.epcc.ed.ac.uk... 129.215.62.177

Connecting to www2.epcc.ed.ac.uk[129.215.62.177]:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1273079 (1.2M) [application/x-gzip]

Saving to: ‘sharpen.tar.gz’

100% [>] 1,273,079 --.-K/s in 0.02s

2014-04-21 15:06:58 (48.6 MB/s)

‘sharpen.tar.gz’ saved [1273079/1273079]

To unpack the archive:

guestXX@archer:~> tar —-xzvf sharpen.tar.gz
sharpen/

sharpen/C/

sharpen/C-MPI/

——snip——
sharpen/C/sharpen.c

sharpen/C/sharpen.h
sharpen/C/sharpen.pbs

This program takes a fuzzy image and uses a simple algorithm to sharpen the image. A very basic parallel
version of the algorithm has been implemented which we will use in this exercise. There are a number of
versions of the sharpen program available:

C-MPI Parallel C version using MPI

F-MPI Parallel Fortran version using MPI
C-OMP Parallel C version using OpenMP
F-OMP Parallel Fortran version using OpenMP

3.6 Compile the source code to produce an executable file

We will compile the C/MPI parallel version of the code for our example. Move to the C-MPI subdirectory
and build the program:

guestXXQ@archer:~> cd sharpen/C-MPI

guestXX@archer:~> 1s

Makefile dosharpen.c fuzzy.pgm location.h sharpen.h
cio.c filter.c location.c sharpen.c sharpen.pbs
guestXX@archer:~> make

cc —g —c sharpen.c

cc —g —-c dosharpen.c

cc —-g —-c filter.c

cc —-g —c cio.c

cc -g —c location.c

cc -o sharpen sharpen.o dosharpen.o filter.o cio.o location.o

This should produce an executable file called sharpen which we will run on the ARCHER compute nodes.
(Note: this executable will not work on the ARCHER frontend nodes as it requires MPI which is dependent
on being run on compute nodes.)

For the Fortran MPI version, the process is much the same as above:

guestXXQ@archer:~> cd sharpen/F-MPI
guestXX@archer:~> 1s

Makefile filter.£90 fuzzy.pgm sharpen.f£90
dosharpen.f£90 fio.£f90 location.c sharpen.pbs
guestXX@archer:~> make

ftn —-g —-c¢ sharpen.f90

ftn -g -c dosharpen.£f90

ftn -g -c¢ filter.£90

ftn -g —-¢ fio.£90

cc -g —-c location.c

ftn -o sharpen sharpen.o dosharpen.o filter.o fio.o location.o

As before, this should produce a sharpen executable.

Don’t worry about the C file - here it is just providing an easy method for printing out the program’s CPU
bindings at run time.

3.7 Running a job

As with other HPC systems, use of the compute nodes on ARCHER is mediated by the PBS job submission
system. This is used to ensure that all users get access to their fair share of resources, to make sure that
the machine is as efficiently used as possible and to allow users to run jobs without having to be physically
logged in.

Whilst it is possible to run interactive jobs (jobs where you log directly into the backend nodes on ARCHER
and run your executable there) on ARCHER, and they are useful for debugging and development, they are
not ideal for running long and/or large numbers of production jobs as you need to be physically interacting
with the system to use them.

The solution to this, and the method that users generally use to run jobs on systems like ARCHER, is to
run in batch mode. In this case you put the commands you wish to run in a file (called a job script) and the
system executes the commands in sequence for you with no need for you to be interacting.

3.7.1 Write the PBS job script
Make sure you are logged onto ARCHER and not in an interactive job session. Using the editor of your
choice, open a new file. For example:

guestXX@esloginXX:~> emacs sharpen_batch.pbs

Add the following lines to the file:
#!/bin/bash --login

#PBS -1 select=1

#PBS -1 walltime=00:05:00
#PBS -A yl14

#PBS -N sharpen

Change to directory that the job was submitted from
cd $PBS_O_WORKDIR

aprun -n 4 ./sharpen

Ensure that on line:

cd $PBS_O_WORKDIR

You type capital ‘0’ and not a zero.

You must also include a final blank line at the end of the document to ensure that the file is read to the end.

The first line specifies which shell to use to interpret the commands we include in the script. Here we use
the Bourne Again SHell (bash) which is the default on most modern systems. The —login option tells the
shell to behave as if it was an interactive shell.

The line -/ select=[nodes] is used to request the total number of compute nodes required for your job (1
in the example above). In the simplest case (when using a single physical core per MPI process) you can

get this number by dividing your total number of MPI processes by 24 (the number of physical cores per
compute node).

The #PBS lines provide options to the job submission system where “-I select” specifies that we want to
reserve 1 compute node for our job - the minimum job size on ARCHER is 1 node (24 cores); the “-1
walltime=00:05:00" sets the maximum job length to 5 minutes; “-A y14” sets the budget to charge the job
to “y14”; “-N sharpen” sets the job name to “sharpen”.

The remaining lines are the commands to be executed in the job. Here we have a comment beginning with
“#”, a directory change to $PBS_O_WORKDIR (an environment variable that specifies the directory the job
was submitted from) and the aprun command (this command tells the system to run the jobs on the compute
nodes rather than the frontend nodes).

3.7.2 Submit the script to the PBS job submission system
Simply use the qsub command with the reservation ID (i.e. (replace <resID> in the command below with
the reservation ID provided by the trainer) and the job submission script name:

guestXX@archer:~> gsub —-g <resID> sharpen_batch.pbs
58306.sdb

The jobID returned from the gsub command is used as part of the names of the output files discussed below
and also when you want to delete the job (for example, you have submitted the job by mistake).

3.7.3 Monitoring/deleting your batch job

The PBS command gstat can be used to examine the batch queues and see if your job is queued, running
or complete. gstat on its own will list all the jobs on ARCHER (usually hundreds) so you can use the “-u
$USER” option to only show your jobs:

guestXX@archer:~> gstat -u $USER

sdb:

Reg’d Reqg’d Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
58306.sdb guest0l standard sharpen - 1 24 -— 00:15 Q -

if you do not see your job, it usually means that it has completed.
If you want to delete a job, you can use the gdel command with the jobID. For example:

guestXX@archer:~> gdel 58306.sdb

3.7.4 Finding the output

The job submission system places the output from your job into two files: <job name>.o<jobID> and <job
name>.e<jobID> (note that the files are only produced on completion of the job). The *.0<jobID> file

contains the output from your job *.e<jobID> contains the errors.

8

guestXX@archer:~> cat sharpen.o58306
Image sharpening code running on 4 processor(s)

Input file is: fuzzy.pgm
Image size is 564 x 770

Using a filter of size 17 x 17

Reading image file: fuzzy.pgm
done

Starting calculation
Process 0 is on cpu
Process 1 is on cpu
Process 3 1is on cpu
Process 2 is on cpu
finished

on node nid01133
on node nid01133
on node nid01133
on node nid01133

N W O

Writing output file: sharpened.pgm
done

Calculation time was 1.552566 seconds
Overall run time was 1.614773 seconds
Application 742518 resources: utime ~6s, stime ~0s, Rss ~24192, inblocks ~13696, outblocks ~17967

3.8 Viewing the images

To see the effect of the sharpening algorithm, you can view the images using the eog Eye of Gnome
program, e.g.

guestXX@archer:~> eog fuzzy.pgm
guestXX@archer:~> eog sharpened.pgm

[Pl

Type “q” in the image window to close the program.

To view the image you will need an X window client installed. Linux or Mac based systems will generally
have such a program available, but Windows does not provide X windows functionality by default. There
are many X window systems available to install on Windows, we recomment the Xming system which can
be downloaded at:

o http://sourceforge.net/projects/xming/

If you wish, you can now explore the limits of the scaling of the code by using more than one node for the
calculation. If you increase the value of select above 1 then you will be using more than one node. How
many cores can you use before the parallel algorithm in the sharpen code breaks down? At what point do
you stop getting speedup by adding more cores?

http://sourceforge.net/projects/xming/

	Aims
	Introduction
	Instructions
	Log into ARCHER frontend nodes and run commands
	Procedure for Mac and Linux users
	Procedure for Windows users

	Running commands
	Using the Emacs text editor
	Useful commands for examining files
	Download and extract the exercise files
	Compile the source code to produce an executable file
	Running a job
	Write the PBS job script
	Submit the script to the PBS job submission system
	Monitoring/deleting your batch job
	Finding the output

	Viewing the images

