
Parallel Programming
Libraries and implementations

Dr Mark Bull, EPCC
markb@epcc.ed.ac.uk

Outline
• MPI – distributed memory de-facto standard

•  Using MPI

• OpenMP – shared memory de-facto standard
•  Using OpenMP

• CUDA – GPGPU de-facto standard
•  Using CUDA

• Others
•  Hybrid programming
•  Xeon Phi Programming
•  SHMEM
•  PGAS

MPI Library
Distributed, message-passing programming

Message-passing concepts

Explicit Parallelism
•  In message-passing all the parallelism is explicit

•  The program includes specific instructions for each communication
•  What to send or receive
•  When to send or receive
•  Synchronisation

•  It is up to the developer to design the parallel
decomposition and implement it
•  How will you divide up the problem?
•  When will you need to communicate between processes?

Message Passing Interface (MPI)
• MPI is a portable library used for writing parallel programs

using the message passing model
•  You can expect MPI to be available on any HPC platform you use

• Based on a number of processes running independently
in parallel
•  HPC resource provides a command to launch multiple processes

simultaneously (e.g. mpiexec, aprun)

•  There are a number of different implementations but all
should support the MPI 2 standard
•  As with different compilers, there will be variations between

implementations but all the features specified in the standard
should work.

•  Examples: MPICH2, OpenMPI

Point-to-point communications
• A message sent by one process and received by another
• Both processes are actively involved in the

communication – not necessarily at the same time
• Wide variety of semantics provided:

•  Blocking vs. non-blocking
•  Ready vs. synchronous vs. buffered
•  Tags, communicators, wild-cards
•  Built-in and custom data-types

• Can be used to implement any communication pattern
•  Collective operations, if applicable, can be more efficient

Collective communications
• A communication that involves all processes

•  “all” within a communicator, i.e. a defined sub-set of all processes

• Each collective operation implements a particular
communication pattern
•  Easier to program than lots of point-to-point messages
•  Should be more efficient than lots of point-to-point messages

• Commonly used examples:
•  Broadcast
•  Gather
•  Reduce
•  AllToAll

Example: MPI HelloWorld
int	
 main(int	
 argc,	
 char*	
 argv[])	

{	

	
 	
 	
 int	
 size,rank;	

	

	
 	
 	
 MPI_Init(&argc,	
 &argv);	

	
 	
 	
 MPI_Comm_size(MPI_COMM_WORLD,	
 &size);	

	
 	
 	
 MPI_Comm_rank(MPI_COMM_WORLD,	
 &rank);	

	

	
 	
 	
 printf("Hello	
 world	
 -­‐	
 I'm	
 rank	
 %d	
 of	
 %d\n",	
 rank,	

size);	

	
 	
 MPI_Finalize();	

	
 	
 return	
 0;	

}	

OpenMP
Shared-memory parallelism using directives

Shared-memory concepts
•  Threads “communicate” by having access to the same

memory space
•  Any thread can alter any bit of data
•  No explicit communications between the parallel tasks

OpenMP
• OpenMP is an Application Program Interface (API) for

shared memory programming
•  You can expect OpenMP to be supported by all compilers on all

HPC platforms

• Not a library interface like MPI
•  You interact through directives in your program source rather than

calling functions/subroutines

• Parallelism is less explicit than MPI
•  You specify which parts of the program you want to parallelise and

the compiler produces a parallel executable

Loop-based parallelism
•  The most common form of OpenMP parallelism is to

parallelise the work in a loop
•  The OpenMP directives tell the compiler to divide the iterations of

the loop between the threads

#pragma	
 omp	
 parallel	
 shared(a,b,c,chunk)	
 private(i)	

{	

	
 	
 	
 #pragma	
 omp	
 for	
 schedule(dynamic,chunk)	
 nowait	

	
 	
 	
 for	
 (i=0;	
 i	
 <	
 N;	
 i++)	
 {	

	
 	
 	
 	
 	
 c[i]	
 =	
 a[i]	
 +	
 b[i];	

	
 	
 	
 }	

}	

CUDA
Programming GPGPU Accelerators

CUDA
• CUDA is an Application Program Interface (API) for

programming NVIDIA GPU accelerators
•  Proprietary software provided by NVIDIA. Should be available on

all systems with NVIDIA GPU accelerators
•  Write GPU specific functions called kernels
•  Launch kernels using syntax within standard C programs
•  Includes functions to shift data between CPU and GPU memory

• Similar to OpenMP programming in many ways in that the
parallelism is implicit in the kernel design and launch

• More recent versions of CUDA include ways to
communicate directly between multiple GPU accelerators
(GPUdirect)

Example:
//	
 CUDA	
 kernel.	
 Each	
 thread	
 takes	
 care	
 of	
 one	
 element	
 of	
 c	

__global__	
 void	
 vecAdd(double	
 *a,	
 double	
 *b,	
 double	
 *c,	
 int	
 n)	

{	

	
 	
 	
 	
 //	
 Get	
 our	
 global	
 thread	
 ID	

	
 	
 	
 	
 int	
 id	
 =	
 blockIdx.x*blockDim.x+threadIdx.x;	

	
 	

	
 	
 	
 	
 //	
 Make	
 sure	
 we	
 do	
 not	
 go	
 out	
 of	
 bounds	

	
 	
 	
 	
 if	
 (id	
 <	
 n)	

	
 	
 	
 	
 	
 	
 	
 	
 c[id]	
 =	
 a[id]	
 +	
 b[id];	

}	

	

//	
 Called	
 with	

vecAdd<<<gridSize,	
 blockSize>>(d_a,	
 d_b,	
 d_c,	
 n);	

Others
Niche and future implementations

Other parallel implementations
• Partitioned Global Address Space (PGAS)

•  Coarray Fortran, Unified Parallel C, Chapel

• Cray SHMEM, OpenSHMEM
•  Single-sided communication library

• OpenACC
•  Directive-based approach for programming accelerators

Example: Running Parallel Programs
• Here is a simple example of a PBS script for that:

•  sets the shell to /bin/bash
•  names the job "Weather1"
•  limits the run time of the job to one wall hour
•  and then runs the MPI executable ./weathersim on 4096 cores

#!/bin/bash	
 –login	

#PBS	
 -­‐N	
 Weather1	

#PBS	
 -­‐l	
 mppwidth=4096	

#PBS	
 -­‐l	
 walltime=1:00:00	

cd	
 $PBS_O_WORKDIR	

mpiexec	
 –n	
 4096	
 ./weathersim	

Summary

Parallel Implementations
• Distributed memory programmed using MPI
• Shared memory programmed using OpenMP
• GPU accelerators programmed using CUDA

• Hybrid programming approaches (e.g. MPI/OpenMP) are
becoming more common
•  They match the hardware layout more closely

• A number of other, more experimental approaches are
available

