
Building Blocks 
Operating Systems, Processes, Threads 

Dr Mark Bull, EPCC 
markb@epcc.ed.ac.uk 



Outline 
• What does an Operating System (OS) do? 

•  OS types in HPC 
•  The Command Line 

• Processes 
•  Threads 

•  Threads on accelerators 

• OS performance optimisation 
•  Why is the OS bad for performance? 
•  Approaches to improving OS performance 



Operating Systems 
What do they do? Which ones are used for HPC? 



Operating System (OS) 
•  The OS is responsible for orchestrating access to the 

hardware by applications. 
•  Which cores is an application running on? 
•  How is the memory allocated and de-allocated? 
•  How is the file-system accessed? 
•  Who has authority to access which resources? 
•  How do we deal with oversubscription (e.g. more applications 

running than cores available). 

• Running applications are controlled through the concepts 
of processes and threads. 



OS’s for HPC 
• HPC sector is dominated by Linux (of various flavours) 

•  Most HPC vendors modify a commercial Linux distro (RedHat or 
SUSe) and tailor to their own system. 

•  Many commodity clusters run a free Linux distro (Scientific Linux is 
particularly popular). 

• Only IBM Power systems still use UNIX (AIX) 
•  16 HPC systems in the June 2013 Top500 list use UNIX 

• Windows HPC is used on a small number of HPC 
systems 
•  3 HPC systems in the June 2013 Top500 list use Windows 



The Command Line 
• HPC sector is dominated by Linux 
•  Interaction is almost always through the Linux command 

line. 
•  Often a reasonably large barrier to new people adopting HPC. 

•  For any serious use of HPC you will have to learn to use 
the command line. 
•  Knowledge is often useful for using the command line on your own 

laptop/PC 
•  You should also learn the basic operation of an in-terminal text 

editing program – “vi” is probably the simplest to learn and is 
available everywhere. 



Processes 



Processes 
• Each application is a separate process in the OS 

•  A process has its own memory space which is not accessible by 
other running process. 

•  Each process is scheduled to run by the OS – it can be tied to a 
particular core or can be migrated between cores 



Process Scheduling 
•  The OS has responsibility for interrupting a process and 

granting the core to another process 
•  Which process is granted access is determined by the scheduling 

policy 
•  Interrupt happens at regular intervals (every 0.01seconds is typical) 
•  Process selected should have processing work to do 

• Hardware can support scheduling of multiple processes 
•  Known as Symmetric Multi-threading (SMT) 
•  Usually appears to the OS as an additional core to use for 

scheduling 

• Process scheduling can be a hindrance to performance 



Threads 
Sharing memory 



Threads 
•  For many applications each process has a single thread… 
• …but with the advent of multicore processors it is 

becoming more common for a process to contain multiple 
threads 



Threads (cont.) 
• All the threads in a process have access to the same 

memory 
•  Can operate in parallel on the same data to speed up applications 
•  Can have threads operating asynchronously (often used in GUIs) 

• OS scheduling policy is aware of threads 
•  Usually scheduled as one thread per core but not a requirement 
•  Switching between threads is usually a bit quicker than switching 

between processes 



Threads and Accelerators 
•  The Accelerator programming model generally requires a 

huge number of threads to provide efficient usage 
•  Oversubscription of the accelerator by threads is encouraged 
•  Hardware supports fast switching of execution of threads 
•  As GPGPUs can have 1000’s of computing elements, 

oversubscription can be difficult! 

•  Threading is becoming more and more important on 
modern HPC machines 



OS Optimisation 
How do vendors get performance? 



Compute node OS 
• On the largest supercomputers the compute nodes often 

run an optimised OS to improve performance 
•  Interactive (front-end) nodes usually run a full OS 
•  Often means that you are cross-compiling 

• How is the OS optimised? 
•  Remove features that are not needed (e.g. USB support) 
•  Restrict scheduling flexibility and increase interrupt period 
•  Remove support for virtual memory (paging) 



Summary 


