

Parallel I/O Performance
Benchmarking and

Investigation on Multiple
HPC Architectures

2

1. Document Information and Version History

Version: 1.4
Status Release

Author(s):
Bryan Lawrence, Chris Maynard, Andy Turner, Xu Guo, Dominic Sloan-
Murphy, Juan Rodriguez Herrera

Reviewer(s) David Henty

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 2016-06-22 Initial draft Andy Turner
0.2 2016-09-27 Edits to abstract and system introductions Dominic Sloan-Murphy
0.3 2016-10-31 Additional structure Dominic Sloan-Murphy
0.4 2017-03-20 Final review before external release Dominic Sloan-Murphy
0.5 2017-03-24 Reviewed Andy Turner

1.0 2017-03-28
Updates following review
External release

Dominic Sloan-Murphy

1.1 2017-05-10 Corrected typo Dominic Sloan-Murphy
1.2 2017-06-21 Added Cirrus and COSMA6 results Dominic Sloan-Murphy
1.3 2017-06-22 Review and corrections Andy Turner

1.4 2017-06-29
Updates following review
External release

Dominic Sloan-Murphy

3

2. Abstract

Solving the bottleneck of I/O is a key consideration when optimising application performance,
and an essential step in the move towards exascale computing. Users must be informed of the I/O
performance of existing HPC resources in order to make best use of the systems and to be able to
make decisions about the direction of future software development effort for their application.
This paper therefore presents benchmarks for the write capabilities for ARCHER, comparing
them with those of the COSMA, UK-RDF DAC, and JASMIN systems, using MPI-IO and, in selected
cases, the HDF5 and NetCDF parallel libraries.

We find a reasonable expectation is for approximately 50% of the theoretical system maximum
bandwidth to be attainable in practice. Contention is shown to have a dramatic effect on
performance. MPI-IO, HDF5 and NetCDF are found to scale similarly but the high-level libraries
introduce a small amount of performance overhead.

For the Lustre file system, on a single shared file, maximum performance is found by maximising
the stripe count and matching the individual stripe size to the magnitude of I/O operation
performed. HDF5 is discovered to scale poorly on Lustre due to an unfavourable interaction with
the H5Fclose() routine.

3. Introduction

Parallel I/O performance plays a key role in many high performance computing (HPC)
applications employed on ARCHER and I/O bottlenecks are an important challenge to understand
and eliminate, where possible. It is therefore necessary for users with high I/O requirements to
understand the parallel I/O performance of ARCHER, as well as other HPC systems on offer, to be
suitably equipped to make informed plans for maximising use of the system and for future
software development projects. The results of this work are of particular relevance to ARCHER
users currently bottlenecked by I/O performance, but, given the ubiquity of I/O in HPC domains,
the findings will be of interest to most researchers and members of the general scientific
community. The information here will also be of interest to centres and institutions procuring
parallel file systems.

Theoretical performance numbers for parallel file systems are usually easily available but are of
limited use as they assume a clean formatted file system with no contention from other users.
Obviously, when used in full production, this level of performance will not usually be attained.

The goal of this paper is to provide insight into the performance of parallel file systems in
production. To answer questions such as: What is the maximum performance actually
experienced? What variation in performance could users experience?

To this end, we detail here the parallel I/O performance of multiple HPC architectures through
testing a set of selected I/O benchmarks. Results are presented from the following systems:

• ARCHER: the UK national supercomputing service, with a Cray Sonexion Lustre
appliance.

• Cirrus: a Tier-2 HPC system hosted by the EPCC, with a DDN EXAScalar ES7K Lustre
appliance

• COSMA (aka COSMA5): one of the DiRAC UK HPC resources, using a DDN

implementation of the IBM GPFS file system.

• COSMA6: the latest revision of the COSMA service, with a DDN EXAScalar Lustre
appliance.

4

• UK-RDF DAC: the Data Analytic Cluster attached to the UK Research Data Facility, also
using DDN GPFS.

• JASMIN: a data analysis cluster delivered by the STFC, using the Panasas parallel file

system.

We run benchio, a parallel benchmarking application which writes a three-dimensional
distributed dataset to a single shared file. On all systems, we measure MPI-IO performance and,
in selected cases, compare this with HDF5 and NetCDF equivalent implementations.

In the Lustre case, a range of stripe counts and sizes are tested. GPFS file systems do not allow the
same level of user configuration so the default configuration as presented to users is employed.

This document is structured as follows: in the subsequent section, we provide detailed
specifications on the chosen benchmark systems and their file systems. We then present our
benchio application, highlighting the contrast between its data layout and the layout used by
more traditional benchmarks. Results and conclusions follow, and we close by highlighting the
opportunities for future work identified during the course of this project.

4. HPC Systems

ARCHER

ARCHER[1] is a Cray XC30-based system and the current UK National Supercomputing Service
run by EPCC[2] at the University of Edinburgh[3]. The /work file systems on ARCHER use the
Lustre technology in the form of Sonexion parallel file system appliances. The theoretical
sustained performance (in terms of bandwidth) of Sonexion Lustre file systems is determined by
the number of SSUs (Scalable Storage Units) that make up the file system. ARCHER has three
Sonexion file systems available to users:

• fs2: 6 SSU, theoretical sustained = 30 GB/s. 48 OSTs, defaults: stripe count = 4, stripe size
= 1 MiB

• fs3: 6 SSU, theoretical sustained = 30 GB/s. 48 OSTs, defaults: stripe count = 4, stripe size
= 1 MiB

• fs4: 7 SSU, theoretical sustained = 35 GB/s. 56 OSTs, defaults: stripe count = 4, stripe size
= 1 MiB

Each compute node on ARCHER has two Intel Xeon E5-2697 v2 (Ivy Bridge) processors running
at 2.7 GHz containing 12 cores each, giving a total of 24 cores per node. Standard compute nodes
have 64 GB of memory shared between the two processors. A set of high-memory nodes are
offered with 128 GB of available memory but these are not considered in this paper.

Compute nodes are linked via the Cray Aries interconnect[4], a low-latency, high-bandwidth link
giving a peak bisection bandwidth of approximately 11,090 GB/s over the entire ARCHER
machine. All I/O to the Lustre file systems is routed over the Aries network to dedicated nodes
linked to the file systems by Infiniband connections.

Cirrus

Cirrus[5] is an HPC service also hosted by the EPCC and is one of the EPSRC Tier-2 UK national
facilities. Launched in 2017, it is a 280 node (10,080 core) HPE/SGI ICE XA cluster offering two
18-core Xeon "Broadwell" processors and 256 GiB of available memory per node. Compute nodes
make use of a high-bandwidth Infiniband interconnect. Storage is provided by a DDN EXAScalar
ES7K Lustre appliance with a peak theoretical bandwidth of 10 GiB/s. The Lustre file system has
14 OSTs, a default stripe count of 1 and a default stripe size of 1 MiB.

5

COSMA (aka COSMA5)

The Durham-based Cosmology Machine (COSMA)[6] is one of the five systems making up the UK
DiRAC facility[7]. Its disks use the IBM General Parallel File System (GPFS) implemented on two
DDN SD12K storage controllers. The theoretical maximum performance is 20 GB/s.

Each compute node on COSMA has two 2.6 GHz Intel Xeon E5-2670 CPUs with 8 cores each, i.e.
16 cores per node. 128 GB of RAM is available as standard and the interconnect between node
and file system is Mellanox Infiniband FDR10. As for ARCHER, all I/O to the GPFS file system is
routed over the Inifiniband compute node network to dedicated nodes linked to the file system
by Infiniband connections.

COSMA6

The latest recent revision of the COSMA service, COSMA6[8], joined the DiRAC facility in April
2017 with a significantly different hardware setup. Rather than the GPFS of the previous revision,
the I/O hardware is “2.5 PB DDN EXAScalar (Lustre) Data space served by 8 OSSs and 2
MDSs”[9]. The Lustre file system has 120 OSTs, a default stripe count of 1 and a default stripe size
of 1 MiB.

The cluster contains 500 IBM iDataPlex dx360 M4 Servers compute nodes giving a total of 8000
Intel Xeon Sandy Bridge cores and more than 35TB of RAM. The interconnect is “Mellanox FDR10
Infiniband in a 2:1 Blocking configuration”.

UK-RDF DAC

The UK Research Data Facility (UK-RDF)[10] is a high-volume file storage service collocated with
ARCHER. Attached to it is the Data Analytic Cluster (DAC)[11], a system for facilitating the
analysis of data held at the RDF. The file system is a DDN GPFS installation and is based on seven
DDN 12K couplets. Separate metadata storage is on NetApp EF550/EF540 arrays populated with
SSD drives. Three file systems are available to users:

• gpfs1: 6.4 PB storage, mounted as /nerc
• gpfs2: 4.4 PB storage, mounted as /epsrc
• gpfs3: 1.5 PB storage, mounted as /general

The DAC offers two compute node configurations: standard, using two 10-core 2.20 GHz Intel
Xeon E5-2660 v2 processors and 128 GB RAM; and high-memory, using four 8-core 2.13 GHz
Intel Xeon E7-4830 processors and 2 TB RAM. In this paper, the standard nodes are used
exclusively to model the typical use case.

All DAC nodes have direct Infiniband connections to the RDF drives with a maximum theoretical
performance of 56 Gbps, or 7 GB/s.

JASMIN

The Joint Analysis System (JASMIN)[12] is an STFC-delivered service providing computing
infrastructure for big data analysis.

All tests were run from the Lotus compute cluster on JASMIN on nodes with 2.6 Ghz 8-core Intel
Xeon E5-2650 v2 processors and 128 GB memory. The cluster uses the Panasas parallel file
system implemented via bladesets connected to compute nodes over a 10 Gbps, i.e. 1.25 GB/s,
Ethernet network, the theoretical limit for performance.

6

5. Parallel I/O benchmark: benchio

The parallel I/O performance of the HPC systems was evaluated by the benchio application
developed at EPCC. The code is Open Source and is available on GitHub[13]. It was chosen ahead
of the popular IOR benchmark for a number of reasons:

• The parallel I/O decomposition can be varied to better model actual user applications.
• The IOR code is very opaque, this makes it very difficult to draw useful conclusions as to

what variations in performance are due to.
• benchio is also able to evaluate the performance of HDF5 and NetCDF, two libraries that

support parallel I/O and are commonly used by user communities on many HPC services.

Elaborating on the first reason listed, IOR uses an extremely simplistic 1D data decomposition
(Figure 1) that does not model user codes and does not test the performance of MPI-IO collective
operations that are key to real performance. This is supported by previous work in Parallel IO
Benchmarking[14] which found that the optimal MPI-IO write configuration for the IOR layout is
to disable collective I/O, a feature essential for achieving speeds beyond that of a few kilobytes-
per-second on realistic data layouts.

The benchio application measures write bandwidth to a single shared file for a given problem
size per processor (weak scaling), i.e. the size of the output file scales with the number of
processors. We chose to measure write bandwidth as it is the critical consideration of scientific
application I/O performance, whereas read performance is traditionally not a factor beyond the
initial “one-off” cost of reading input files.

The test data is a series of double precision floating point numbers held in a 3D array and shared
over processes in a 3D block decomposition (see Figure 2 and Figure 3). Halos have been added
to all dimensions of the local arrays to better approximate the layout of a “real-world” scientific
application. By default, each of these local arrays are of size 1283.

Figure 1. IOR data layout: simple sequential

Figure 2. benchio data layout: 3D strided, P2 behind P0

7

6. Results

With benchio, each test is repeated a minimum of ten times and the maximum, minimum and
mean bandwidth reported. As I/O is a shared resource on all measured machines, and therefore
subject to contention from other users, the maximum attained bandwidth is considered to be
most representative of capabilities of a system. In our initial ARCHER results, we present the full
range of values to demonstrate the high variance caused by user contention. However, in the
results following, we present only the maximum unless otherwise indicated.

ARCHER Performance

benchio was compiled on ARCHER with the following modules loaded:

 1) modules/3.2.10.2
 2) eswrap/1.3.3-1.020200.1278.0
 3) switch/1.0-1.0502.57058.1.58.ari
 4) craype-network-aries
 5) craype/2.4.2
 6) cce/8.4.1
 7) cray-libsci/13.2.0
 8) udreg/2.3.2-1.0502.9889.2.20.ari
 9) ugni/6.0-1.0502.10245.9.9.ari
 10) pmi/5.0.7-1.0000.10678.155.25.ari
 11) dmapp/7.0.1-1.0502.10246.8.47.ari
 12) gni-headers/4.0-1.0502.10317.9.2.ari
 13) xpmem/0.1-2.0502.57015.1.15.ari
 14) dvs/2.5_0.9.0-1.0502.1958.2.55.ari
 15) alps/5.2.3-2.0502.9295.14.14.ari
 16) rca/1.0.0-2.0502.57212.2.56.ari
 17) atp/1.8.3
 18) PrgEnv-cray/5.2.56
 19) pbs/12.2.401.141761
 20) craype-ivybridge
 21) cray-mpich/7.2.6
 22) packages-archer
 23) bolt/0.6
 24) nano/2.2.6
 25) leave_time/1.0.0
 26) quickstart/1.0
 27) ack/2.14
 28) xalt/0.6.0
 29) epcc-tools/6.0

Figure 3. benchio data layout: example 3D decomposition, 2x2x2 grid per processor. Equivalent to layout of output file. Note:
data is an entirely contiguous 1x32 array, split into two rows in this figure only for legibility. Contrast with the IOR parallel

data layout shown in Figure 1.

8

 30) cray-netcdf-hdf5parallel/4.4.0
 31) cray-hdf5-parallel/1.8.16

using the Cray Fortran compiler with the default compile flags.

Using the default Lustre settings on ARCHER:

• Stripe size: 1 MiB
• Number of stripes: 4

and running on the fs3 file system, as defined above, we see the performance shown in Figure 4
and listed in Table 1. Recall that each compute node on ARCHER has 24 compute cores and that
all cores per node are used when running benchio, giving 24 writers per node.

Figure 4. ARCHER MPI-IO default striping (4). A random jitter is applied to the x-axis to better

illustrate clusters of similar performance.

 Write Bandwidth (MiB/s)
Writers Total MiB Min. Median Max. Mean Count

24 384 352 563 896 608 30
48 768 7 448 1485 662 40
96 1536 104 858 2567 1096 40

192 3072 52 889 1983 939 40
384 6144 238 1049 1882 1042 40
768 12288 650 1141 1664 1117 40

1536 24576 564 1049 1620 1081 40
3072 49152 835 1309 1787 1307 40
6144 98304 661 986 1764 1041 40

12288 196608 507 798 1149 803 20
24576 393216 374 423 453 423 10

Table 1. ARCHER MPI-IO default striping (4) raw data.

9

Using the default stripe settings on ARCHER, the maximum write performance that can be
achieved is just over 2,500 MiB/s, just 8.3% of the theoretical sustained performance of 30,000
MiB/s.

In the worst case, 48 writers give a speed of approximately 7 MiB/s, more than a factor of 200
slower than the maximum performance of near 1,500 MiB in that instance. This clearly illustrates
the extreme effects file system contention from other users can have on the range of I/O
performance.

Lustre Tuning

As described in Parallel I/O Performance on ARCHER[15], to get the best parallel write
performance for a single-shared file case we must use as many stripes as possible. This is
achieved on Lustre by setting the striping to “-1” which stripes over all available OSTs. We
repeated the benchmarks with:

• File system: fs3
• Stripe size: 1 MiB
• Number of stripes: -1 (corresponds to 48 on fs3)

The performance for this configuration is shown in Figure 5 and Table 2.

Figure 5. ARCHER MPI-IO maximum striping (-1). Default striping of 4 is plotted for comparison.

10

 Write Bandwidth (MiB/s)
Writers Total MiB Min. Median Max. Mean Count

24 384 234 396 616 432 30
48 768 24 581 1356 694 40
96 1536 93 1289 2559 1233 40

192 3072 123 2317 4944 2547 40
384 6144 455 4145 7210 3890 40
768 12288 1541 6872 15116 8318 40

1536 24576 919 4883 11262 5050 40
3072 49152 2789 7645 15898 8547 40
6144 98304 3263 8477 14323 8371 40

12288 196608 1429 6308 12192 6598 30
24576 393216 5046 5480 7407 5634 10

Table 2. ARCHER MPI-IO maximum striping (-1) raw data.

When using the maximum number of stripes, we see much improved performance (compared to
the default stripe count of 4) with a maximum write bandwidth of slightly under 16,000 MiB/s
with 3072 cores (128 nodes) writing simultaneously. This is a performance of just over 50% of
the advertised sustained bandwidth of 30,000 MiB/s for this file system.

The experiments were then repeated, adjusting the size of each Lustre stripe:

• Stripe sizes: 4 MiB and 8 MiB
• Number of stripes: -1 and 4

Maximum measured performance is given in Figure 6 and Figure 7 with the data from the default
1 MiB configuration plotted for comparison. As previously stated, we plot the maximum rather
than mean, median or other percentile to account for the high variance in results from
contention.

Figure 6. ARCHER stripe size performance, default stripe count

0

500

1000

1500

2000

2500

3000

16 64 256 1024 4096

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

ARCHER MPI-IO: Striping = 4, Local Size = 128^3

1 MiB 4 MiB 8 MiB

11

 Max. Write Bandwidth (MiB/s)
Writers Total MiB 1 MiB 4 MiB 8 MiB

24 384 896.015 1013.819 825.56
48 768 1484.611 1882.74 1606.424
96 1536 2567.143 2287.086 2792.52

192 3072 1982.988 1925.634 2266.698
384 6144 1881.732 2101.862 1520.441
768 12288 1663.967 1747.987 1187.158

1536 24576 1620.391 1971.91 1146.857
3072 49152 1786.612 1944.728 1100.938
6144 98304 1763.888 1947.658 1181.027

Table 3. ARCHER stripe size performance, default stripe count raw data.

Figure 7. ARCHER stripe size performance, maximum stripe count

 Max. Write Bandwidth (MiB/s)
Writers Total MiB 1 MiB 4 MiB 8 MiB

24 384 615.717 737.916 660.479
48 768 1355.734 1577.886 1365.949
96 1536 2559.369 3316.318 2840.826

192 3072 4943.626 5707.661 5873.023
384 6144 6971.013 9024.361 10835.89
768 12288 13222.881 16144.447 15697.12

1536 24576 11262.025 16433.642 13874.34
3072 49152 15897.907 15403.649 9037.988
6144 98304 14323.187 11858.55 10073.33

12288 196608 8143.358 6024.108 9907.275

Table 4. ARCHER stripe size performance, maximum stripe count raw data.

Stripe size was found to have a limited effect on the write performance, with the peak for all
three sizes being approximately 16,000 MiB/s as before and the measured differences being in-
line with the expected variance caused by file system contention. All three settings are shown to
be detrimental as core counts increase beyond this performance peak, an effect attributed to
increased file locking times and OST contention.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

16 64 256 1024 4096 16384

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

Striping = -1, Local Size = 128^3

1 MiB 4 MiB 8 MiB

12

Data Size

All prior experiments were performed with the default local data array of 1283 double precision
values (16 MiB) of data per process. We expected that the benefits of larger stripe sizes would be
made apparent with greater volumes of data so repeated the above tests with an increased array
size of 2563 values (128 MiB) per process. Results are given in Figure 8 and Figure 9.

Figure 8. ARCHER large local arrays bandwidth, default stripe count

 Max. Write Bandwidth (MiB/s)
Writers Total MiB 1 MiB 4 MiB 8 MiB

24 3072 862.431 911.453 915.131
48 6144 1312.826 1512.007 1565.051
96 12288 1292.413 1781.018 1788.575

192 24576 1584.816 2077.506 1752.687
384 49152 880.738 1499.177 1251.076
768 98304 924.212 1428.858 1553.405

1536 196608 821.884 1548.462 1354.874
3072 393216 1287.72 1527.065 1649.823
6144 786432 946.356 1635.712 1939.126

Table 5. ARCHER large local arrays bandwidth, default stripe count raw data.

0

500

1000

1500

2000

2500

16 64 256 1024 4096

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

ARCHER MPI-IO: Striping = 4, Local Size = 256^3

1 MiB 4 MiB 8 MiB

13

Figure 9. ARCHER large local arrays bandwidth, maximum stripe count

 Max. Write Bandwidth (MiB/s)
Writers Total MiB 1 MiB 4 MiB 8 MiB

24 3072 661.667 698.198 691.463
48 6144 1310.712 1495.313 1487.371
96 12288 2270.36 2853.872 3084.965

192 24576 3790.924 5716.189 5586.629
384 49152 5359.535 7469.593 7662.899
768 98304 5775.287 10987.14 9107.814

1536 196608 5945.99 12219.962 8598.607
3072 393216 11320.886 12836.212 13784.597
6144 786432 11529.934 11821.306 15946.277

12288 1572864 6367.598 8402.777 8204.55

Table 6. ARCHER large local arrays bandwidth, maximum stripe count raw data.

The larger 4 MiB and 8 MiB stripe sizes give consistently better performance than the default 1
MiB at both 4 and -1 stripe counts. Indeed 8 MiB at 6144 cores is the only configuration to
achieve the apparent 16,000 MiB/s limit on ARCHER I/O while the default 1 MiB reaches less
than 12,000 MiB/s.

It is apparent that stripe size configuration must be considered in conjunction with I/O operation
size to attain maximum performance. In general they must match; lower volume operations
should be given smaller stripe sizes, while larger operations require larger stripes.

NetCDF Performance

Optimised installations of NetCDF, backed by parallel HDF5, are provided by Cray as part of the
operating system on ARCHER. At time of writing, the default version of this cray-netcdf-
hdf5parallel module is 4.3.3.1. However, it was found to give poor performance, failing to
demonstrate scalability and instead reaching a peak bandwidth of approximately 1 GiB/s
regardless of number of writers or Lustre configuration. We therefore used the more recent
NetCDF version 4.4.0 which scales as expected for all benchmarks and recommend to avoid the
use of NetCDF versions 4.3.3.1 and below for performance reasons.

Results for version 4.4.0, repeating the stripe and array size experiments performed for MPI-IO,
are plotted in Figure 10 to Figure 13.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

16 64 256 1024 4096 16384

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

ARCHER MPI-IO: Striping = -1, Local Size = 256^3

1 MiB 4 MiB 8 MiB

14

Figure 10. ARCHER NetCDF v4.4.0 performance, default striping, default array sizes

 Max. Write Bandwidth (MiB/s)
Writers Total MiB 1 MiB 4 MiB 8 MiB

24 384 630.919 600.061 558.083064
48 768 933.118 946.605 1025.44352
96 1536 1177.923 1279.098 1371.81252

192 3072 1244.675 1683.079 1304.60863
384 6144 1527.386 1597.371 1410.57667
768 12288 1458.318 1824.661 2088.70964

1536 24576 1604.539 1512.824 1965.94972
3072 49152 1669.925 1803.806 1858.53392
6144 98304 1026.17 1630.857 2139.2064

Table 7. ARCHER NetCDF v4.4.0 performance, default striping, default array sizes raw data.

Figure 11. ARCHER NetCDF v4.4.0 performance, maximum striping, default array sizes

0

500

1000

1500

2000

2500

16 64 256 1024 4096

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

ARCHER NetCDF: Striping = 4, Local Size = 128^3

1 MiB 4 MiB 8 MiB

0

2000

4000

6000

8000

10000

12000

16 64 256 1024 4096 16384

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

ARCHER NetCDF: Striping = -1, Local Size = 128^3

1 MiB 4 MiB 8 MiB

15

 Max. Write Bandwidth (MiB/s)
Writers Total MiB 1 MiB 4 MiB 8 MiB

24 384 476.357 414.52 425.062
48 768 954.557 911.008 904.397
96 1536 1935.982 2005.05 1957.675

192 3072 3952.425 3710.232 3535.613
384 6144 4728.441 3339.897 6523.897
768 12288 7020.143 7284.373 7810.41

1536 24576 7112.494 7073.241 10085.431
3072 49152 10399.51 10806.77 9037.988
6144 98304 10442.644 10807.797 10073.327

12288 196608 6416.175 8727.265 7877.869

Table 8. ARCHER NetCDF v4.4.0 performance, maximum striping, default array sizes raw data.

Figure 12. ARCHER NetCDF v4.4.0 performance, default striping, large arrays

 Max. Write Bandwidth (MiB/s)
Writers Total MiB 1 MiB 4 MiB 8 MiB

24 3072 874.671 869.748 828.117
48 6144 1569.881 1375.863 1593.592
96 12288 1752.223 1678.23 1640.99

192 24576 1772.707 1889.365 1817.492
384 49152 1664.027 2021.052 1577.356
768 98304 1306.42 1920.333 2088.71

1536 196608 1521.227 1340.975 2229.308
3072 393216 1620.105 2254.418 1906.907
6144 786432 1091.415 1939.353 1583.67

Table 9. ARCHER NetCDF v4.4.0 performance, default striping, large arrays raw data.

0

500

1000

1500

2000

2500

16 64 256 1024 4096

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

ARCHER NetCDF: Striping = 4, Local Size = 256^3

1 MiB 4 MiB 8 MiB

16

Figure 13. ARCHER NetCDF v4.4.0 performance, maximum striping, large arrays

 Max. Write Bandwidth (MiB/s)
Writers Total MiB 1 MiB 4 MiB 8 MiB

24 3072 624.57 608.132 619.614
48 6144 1331.474 1279.222 1282.378
96 12288 2652.12 2680.079 2578.753

192 24576 5055.44 5143.392 5318.449
384 49152 8429.176 8416.282 9166.182
768 98304 9069.933 8709.177 11555.443

1536 196608 9858.811 9992.29 10750.391
3072 393216 11769.056 12631.356 12219.471
6144 786432 11746.485 11133.308 12953.971

12288 1572864 7305.898 6978.894 6478.172

Table 10. ARCHER NetCDF v4.4.0 performance, maximum striping, large arrays raw data.

NetCDF performance characteristics were found to be entirely similar to MPI-IO, with variations
in stripe count, stripe size and local array size producing the same general trend. This is in line
with expectations as NetCDF interfaces to HDF5 for its parallel implementation, which is itself
based on MPI-IO.

Peak bandwidth was measured at 13,000 MiB/s, down from the 16,000 MiB/s seen with MPI-IO,
i.e NetCDF achieves roughly 80% of MPI-IO performance. This is attributed to the overhead of the
NetCDF/HDF5/MPI-IO stack and the additional structuring applied to NetCDF files. To verify this,
we examined the write statistics recorded by MPICH, specifically those reported through the
MPICH_MPIIO_STATS environment variable. Extracts from a simple base case – single writer,
maximum striping – are given below:

MPIIO write access patterns for striped/mpiio.dat
 independent writes = 0
 collective writes = 24

MPIIO write access patterns for striped/hdf5.dat
 independent writes = 6
 collective writes = 24

0

2000

4000

6000

8000

10000

12000

14000

16 64 256 1024 4096 16384

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

ARCHER NetCDF: Striping = -1, Local Size = 256^3

1 MiB 4 MiB 8 MiB

17

MPIIO write access patterns for striped/netcdf.dat
 independent writes = 10
 collective writes = 24

From this, we can see the actual parallel I/O performed, the collective writes count, is identical
between the three libraries, while independent writes increase with the richness of the structural
and header information provided. This partially accounts for the lowered performance peak with
the remaining deficit being additional time spent in library-specific functions. This last point is of
particular relevance in the case of HDF5 on ARCHER, detailed in the following section.

HDF5 Performance

As with NetCDF, Cray provides several pre-installed versions of the HDF5 parallel library on
ARCHER. For these library versions (from the default 1.8.14 to the most current 1.10.0), similar
performance limitations as for NetCDF 4.3.3.1 were observed. Given the hierarchical nature of
the libraries, we theorised that the NetCDF 4.3.3.1 limitations were in reality a manifestation of a
bug in the HDF5 layer, and that NetCDF 4.4.0 circumvented the issue by following an alternate
code path around the problematic library calls.

Application profiling of benchio with the HDF5 backend, to verify this theory, found the majority
of compute time is spent in function MPI_File_set_size(), called within the HDF5 library from the
user-level H5Fclose() routine. Discussions with Cray revealed this to indeed be a known bug
specific to the combination of HDF5 with Lustre file systems.

An MPI_File_set_size() operation, on a Linux platform like ARCHER, eventually calls the POSIX
function: ftruncate(). This has an unfavourable interaction with the locking for the series of
metadata communications the HDF5 library makes during a file close. In practice, this leads to
relatively long close times of tens of seconds and hence the lack of scalability observed.

The HDF5 developers have noted this behaviour in the past where it manifested in H5Fflush(), the

function for flushing write buffers associated with a file to disk: “when operating in a parallel

application, this operation resulted in a call to MPI_File_set_size, which currently has very poor

performance characteristics on Lustre file systems. Because an HDF5 file’s size is not required to be

accurately set until the file is closed, this operation was removed from H5Fflush and added to the code

for closing a file”[16] hence leading to the behaviour currently observed in H5Fclose().

Cray’s investigations on this bug are on-going and, at present, no known work-around or
mitigation is provided for end users. The recommendation for users is to be aware of this
interaction and inform research communities as the issue is observed.

Impact of System Load

To better understand the impact of file system contention, we simulated different degrees of load
by running multiple instances of the benchio MPI-IO test in parallel. Figure 14 shows the
aggregate mean performance of one, two and four benchio instances writing concurrently to
independent files with the default stripe size (1 MiB).

Note that here we use aggregate mean performance, rather than maximum performance, as, in
the given setup, often a single benchio instance would be performing I/O while the other
instances were preparing to start, had already finished or were otherwise between iterations.
The maximum bandwidth achieved during such a test is essentially the same as the maximum
bandwidth when running just a single benchio instance and is therefore not representative of the
impact of system load.

18

Figure 14. Effect of I/O load on ARCHER

Average Write Bandwidth (MiB/s)
Writers Total MiB 1 File 2 Files

Instance 1
2 Files

Instance 2
2 Files

Aggregate
24 3072 661.667
48 6144 1310.712 630.159 627.403 1257.562
96 12288 2270.36 1269.261 1279.809 2549.07

192 24576 3790.924 2170.566 2190.197 4360.763
384 49152 5359.535 3459.273 3441.909 6901.182
768 98304 5775.287 4503.837 4657.415 9161.252

1536 196608 5945.99 5589.881 5009.902 10599.783
3072 393216 11320.886 5373.545 5278.291 10651.836
6144 786432 11529.934 6250.276 6669.603 12919.879

12288 1572864 6367.598 5901.083 5092.51 10993.593

Table 11. Effect of I/O load on ARCHER. 1 and 2 files.

Average Write Bandwidth (MiB/s)
Writers Total MiB 4 Files

Instance 1
4 Files

Instance 2
4 Files

Instance 3
4 Files

Instance 4
4 Files

Aggregate
96 12288 627.204 664.347 644.53 648.275 2584.356

192 24576 1261.765 1278.588 1278.203 1292.701 5111.257
384 49152 2176.97 2188.784 2126.32 2167.82 8659.894

768 98304 3384.657 3306.514 3360.021 3366.43 13417.622
1536 196608 2786.927 2746.021 2723.053 2745.284 11001.285

3072 393216 2944.726 2954.255 2954.338 2958.292 11811.611
6144 786432 4290.212 3533.092 3513.919 3511.966 14849.189

12288 1572864 2962.049 3469.729 3395.223 3373.497 13200.498

Table 12. Effect of I/O load on ARCHER. 4 files.

At core counts below 96, the data trends are reasonably similar and we see that bandwidth is on
average divided equally between writers. E.g. the aggregate bandwidth of two benchio instances,
each with 24 writers putting data to independent files, is roughly equivalent to the bandwidth of
a single instance with 48 writers. However, as number of writers increase, there is a definite
trend that multiple files give better performance than a single file. This is particularly apparent in
the 768 writers case where a single file sees approximately 5800 MiB/s while four files achieves

0

2000

4000

6000

8000

10000

12000

14000

16000

16 64 256 1024 4096 16384

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

ARCHER MPI-IO: Striping = -1, Local Size = 256^3

1 File 2 Files 4 Files

19

near 14000 MiB/s, more than a factor of two difference. In further work, investigations into using
varying numbers of files, from the current findings on a single shared file to the extreme case of a
single file per process, could be done to further explore the results seen here.

Cirrus Performance

The Cirrus service also makes use of a Lustre-based file system for its storage but differs from
ARCHER in its implementation and defaults. Default Lustre settings are:

• Stripe size: 1 MiB
• Number of stripes: 1

A comparison of the default “unstriped” setting and maximum “-1” striping for MPI-IO, HDF5 and
NetCDF is given below in Figure 15.

Figure 15. All backends bandwidth on Cirrus in single/unstriped and fully/”-1” striped

configurations

 Unstriped: Max. Write Bandwidth (MiB/s)
Writers Nodes Total MiB MPI-IO HDF5 NetCDF

1 1 128 803.342 490.913 444.193
16 1 2048 603.439 859.273 818.341
36 1 4608 572.148 780.250 827.913
72 2 9216 567.968 787.721 702.255

144 4 18432 506.398 844.792 679.414
288 8 36864 444.077 567.532 593.117
576 16 73728 417.398 813.153 817.239

1152 32 147456 413.359 589.097 560.144
2304 64 294912 385.185 508.915 529.752

Table 13. All backends bandwidth on Cirrus raw data. Unstriped configurations.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 4 16 64 256 1024 4096

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

Cirrus: Striping Over Backends, Local Size = 256^3

MPI-IO Unstriped HDF5 Unstriped NetCDF Unstriped

MPI-IO Striped HDF5 Striped NetCDF Striped

20

 Striped: Max. Write Bandwidth (MiB/s)
Writers Nodes Total MiB MPI-IO HDF5 NetCDF

1 1 128 735.882 549.908 355.733
16 1 2048 571.380 749.297 710.646
36 1 4608 572.148 755.851 750.427
72 2 9216 915.846 1122.879 1455.604

144 4 18432 1506.970 1166.725 1476.841
288 8 36864 3240.886 1850.707 4755.687
576 16 73728 6990.985 2095.109 7840.698

1152 32 147456 7685.589 2007.141 7916.845
2304 64 294912 7317.950 2165.941 7995.510
4608 128 589824 7617.000 2773.464 6588.293

Table 14. All backends bandwidth on Cirrus raw data. Fully striped configurations.

Like ARCHER, higher stripe counts must be used to achieve any significant performance.
Unstriped bandwidth over all core counts is within 400-900 MiB/s with no scaling observed. The
striped MPI-IO and NetCDF cases scale well and peak at approximately 8000 MiB/s, 78% of the
10240 MiB/s theoretical maximum of the system. This is significantly closer to the rated
maximum than the 50% achieved by ARCHER and is ascribed to the reduced file system
contention resulting from the fewer simultaneous Cirrus users.

The HDF5 backend does exhibit some scaling but does not approach the bandwidths of either
MPI-IO or NetCDF. This is again attributed to the HDF5 performance bug seen on Lustre systems,
described above.

In contrast to ARCHER, virtually no scaling is observed within a single node, demonstrated by the
low gradient for all configurations at 1-36 writers in Figure 15. Performance is seen to scale with
node count, rather than core count, suggesting that a single writer is sufficient to saturate the
bandwidth available to a node.

COSMA Performance

The GPFS file system employed by the DiRAC COSMA service does not facilitate user tuning like
Lustre. GPFS settings are fixed at installation and cannot be adjusted at run time. We therefore
ran a single set of benchmarks to determine the peak bandwidth of the system, presented in
Figure 16. NetCDF and HDF5 results were not gathered in this case, due to time constraints. We
will investigate the performance of HDF5 and NetCDF on GPFS in a future update to this work but
expect to see similar trends to that seen for ARCHER (although HDF5 performance may be
improved on GPFS over Lustre because of the particular issues with Lustre described above).

21

Figure 16. MPI-IO bandwidth for DiRAC COSMA

 Max. Write Bandwidth (MiB/s)
Writers Total MiB Bandwidth

16 384 1658.71634
32 768 2796.63964
64 1536 3771.1242

128 3072 6771.9717
256 6144 10619.3772
512 12288 14308.9679

1024 24576 10214.0822
2048 49152 9039.30916

Table 15. MPI-IO bandwidth for DiRAC COSMA raw data.

Best performance is seen at 512 writers, which attain marginally more than 14000 MiB/s or
approximately 68% of the rated maximum, before parallel efficiency drops. As with ARCHER, this
is attributed to file and disk contention.

COSMA6 Performance

The latest revision of COSMA employs a Lustre file system, rather than the GPFS of its
predecessor. When compared with the other Lustre-based systems tested, unique to COSMA6 is
the degree to which Lustre striping can be applied. For our tests, we benchmarked a range of
stripe counts from 1 (single striped) to the fully striped maximum of 120 using the MPI-IO
backend, as on COSMA5. Results are given in Figure 17.

0

2000

4000

6000

8000

10000

12000

14000

16000

16 32 64 128 256 512 1024 2048

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

DiRAC COSMA MPI-IO: GPFS, Local Size = 128^3

22

Figure 17. Comparison of stripe counts 1 to 120 on COSMA5 system using MPI-IO backend

Max Write Bandwidth (MiB/s)
Writers Total MiB Striping

120 60 30 20 10
16 3072 343.196
32 6144 51.113 50.636 46.991 55.276 780.265
64 12288 91.28 88.087 87.055 97.914 1549.886

128 24576 152.893 141.492 1923.342 2229.998 2772.013
256 49152 2046.243 2459.977 3346.596 3246.9 4330.773
512 98304 4633.888 4015.723 4619.636 3702.87 6923.098

1024 196608 6192.823 4993.686 5506.832 4331.926 7286.229
2048 393216 7737.046 7650.472 7596.26 6860.159 7816.17
4096 786432 11987.114 7967.048 11124.846 11116.762 6727.335

Table 16. COSMA6 stripe counts 120 to 10. Raw data.

Max Write Bandwidth (MiB/s)
Writers Total MiB Striping

8 6 4 2 1
16 3072 625.527
32 6144 1007.276 872.608 1069.117 1033.71 1010.187
64 12288 1836.694 1857.192 1913.629 1850.286 1012.017

128 24576 3016.013 3053.492 3055.735 1799.932 1043.609
256 49152 4735.175 4442.068 3916.359 1935.826 1007.092
512 98304 6590.877 4761.657 3579.359 1664.185

1024 196608 7316.001
2048 393216
4096 786432

Table 17. COSMA6 stripe counts 8 to 1. Raw data.

Up to 2048 writers, best performance is seen from a stripe count of 8-10. However, for additional
scaling beyond that, maximum striping is required, as with the other Lustre systems
benchmarked.

0

2000

4000

6000

8000

10000

12000

14000

16 64 256 1024 4096

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

COSMA6, Local Size = 256^3

1

2

4

8

10

20

30

60

120

23

Peak performance of approximately 12000 MiB/s is seen at 4096 writers with the maximum of
120 stripes. Details on how this compares to the theoretical maximum of the system will be
included in a future revision of this document.

UK-RDF DAC Performance

The UK-RDF DAC supports only on-node parallelism; jobs cannot span multiple nodes. All tests
were therefore run on a single, standard compute node offering 40 CPU cores.

We benchmarked two of the three GPFS file systems and examined the performance of each of
the benchio parallel backends. Comparisons are given in Figure 18 and Figure 19.

Figure 18. All backends bandwidth for UK-RDF DAC. File system: 4.4PB /gpfs2 mounted as /epsrc.

 Max. Write Bandwidth (MiB/s)
Writers Total MiB MPI-IO HDF5 NetCDF

1 3072 2098.365 1153.154 831.168
2 6144 2438.094 2226.086 1523.809
4 12288 1261.083 1361.701 1221.957
8 24576 1055.67 1245.742 1181.084

16 49152 1070.569 1307.79 1240.46
32 98304 1094.017 1321.716 1228.554
40 196608 905.553 1142.092 1106.309

Table 18. All backends bandwidth for UK-RDF DAC raw data. File system: 4.4PB /gpfs2

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

UK-RDF DAC: /gpfs2, Local Size = 256^3

MPI-IO HDF5 NetCDF

24

Figure 19. All backends bandwidth for UK-RDF DAC. File system: 1.5 PB /gpfs3 mounted as /general.

 Max. Write Bandwidth (MiB/s)
Writers Total MiB MPI-IO HDF5 NetCDF

1 3072 2098.357 1163.637 831.1686
2 6144 2415.096 2151.261 1523.81
4 12288 1270.471 1358.09 1213.27
8 24576 1056.759 1233.735 1125.275

16 49152 1057.305 1282.404 1210.402
32 98304 845.9315 1051.335 808.5274
40 196608 732.475 889.3521 936.0146

Table 19. All backends bandwidth for UK-RDF DAC raw data. File system: 1.5 PB /gpfs3

No difference in performance was measured between the /gpfs2 and /gpfs3 file systems. Both
achieved the same peak performance of approximately 2500 MiB/s, or approximately 35% of the
theoretical maximum of 7000 MiB/s. Hence file system storage capacity was found to have no
bearing on overall write speed in this instance, contrary to the case of Sonexion Lustre (see the
HPC Systems section above for an illustration of how additional storage hardware/SSUs influence
the maximum potential performance of the fs4 Lustre file system on ARCHER, in comparison to
fs2 and fs3).

MPI-IO, HDF5 and NetCDF displayed identical scaling characteristics with their peak bandwidths
reflecting the arrangement of their hierarchy. HDF5 reached 2200 MiB/s while NetCDF
performed at 1500 MiB/s, or 88% and 60% of MPI-IO respectively.

Scope for parallelisation is limited on this system with performance dropping significantly at 4
writers and above. Previous work in Investigating Read Performance of Python and NetCDF when
using HPC Parallel Filesystems[17] on the RDF DAC supports these findings, showing sequential
serial read performance to peak at roughly 1400 MiB/s, i.e. the same performance level seen
from 4 to 40 writers in Figure 18 and Figure 19. Further work is needed to precisely identify the
bottleneck limiting the scalability on this system.

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

UK-RDF DAC: /gpfs3, Local Size = 256^3

MPI-IO HDF5 NetCDF

25

JASMIN Performance

As with the RDF DAC, JASMIN is intended for analysis of large volumes of data. However, in
contrast to the DAC, jobs can be run across multiple nodes in the cluster, potentially increasing
the ceiling for parallelisation. Results were gathered from 1 to 32 writers and are presented in
Figure 20.

Figure 20. MPI-IO bandwidth for JASMIN

 Max. Write Bandwidth (MiB/s)
Writers Total MiB Bandwidth

1 128 490.264
2 256 409.038
4 512 557.479
8 1024 467.489

16 2048 230.663
32 4096 362.702

Table 20. MPI-IO bandwidth for JASMIN raw data.

With further reference to Investigating Read Performance of Python and NetCDF when using HPC
Parallel Filesystems[17], sequential serial performance on JASMIN has been measured at
approximately 500 MiB/s, the same level of performance observed in these parallel I/O tests.
From this, we conclude that there is no scope for improvement with parallelisation on this
system under the default configuration. However, at time of writing, additional work is underway
from Jones et al. to expand their investigation to include multi-threaded performance and
examine parallelism on JASMIN in greater detail. Results are expected to be published at a later
date.

0

100

200

300

400

500

600

1 2 4 8 16 32

W
ri

te
 B

an
d

w
id

th
 (

M
iB

/s
)

Writers

JASMIN MPI-IO: GPFS, Local Size = 256^3

26

Comparative System Performance

Figure 21 gives an overview of all benchmark systems and compares their overall performance.

Figure 21. Comparison of maximum write performance between benchmark systems

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 4 16 64 256 1024 4096 16384

M
ax

. B
an

d
w

id
th

 /
 M

iB
/s

Writers

All Systems MPI-IO: Maximum Write Performance

ARCHER (256^3)

COSMA (256^3)

COSMA6 (256^3)

JASMIN (256^3)

RDF DAC (256^3)

Cirrus (256^3)

27

 Max. Write Bandwidth (MiB/s)
Writers ARCHER COSMA COSMA6 JASMIN RDF-DAC Cirrus

1 490.264 2098.365 735.882
2 409.038 2392.526
4 557.479 1261.083
8 467.489 1050.257

16 1031.078 625.527 230.663 1070.570 571.380
24 698.198
32 1940.589 1069.117 362.702 1025.025
36 572.148
48 1495.313
64 3367.448 1913.629
72 915.846
96 3084.965

128 5225.449 3055.735
144 1506.970
192 5716.189
256 7514.007 4735.175
288 3240.886
384 7662.899
512 10145.69 6923.098
576 6990.985
768 10987.14

1024 10229.963 7316.001
1152 7685.589
1536 12219.962
2048 9405.305 7816.17
2304 7317.950
3072 13784.597
4096 11987.114
4608 7617.000
6144 15946.277

12288 8402.777

Table 21. Comparison of maximum write performance between benchmark systems raw data

The systems intended for high-performance parallel simulations, ARCHER and the two COSMAs,
are broadly comparable, as are the two data analysis systems. The scope for parallelism is simply
lower on JASMIN and the RDF DAC and users should not expect compute and analysis platforms
to have similar performance. Cirrus sits between the two other classes of system, in line with
expectations for a Tier-2 resource.

7. Conclusions

Our findings for write performance can be summarised as follows: approximately 50% of the
theoretical maximum write performance on a system should be expected to be attainable in
production, with dramatic variance due to user contention – a factor of 200 difference in the
worst case. We additionally verified that systems designed for parallel simulations offer much
higher performance than data analysis platforms.

The three parallel libraries, MPI-IO, HDF5 and NetCDF, share the same performance
characteristics but the higher level APIs introduce additional overhead. A reasonable expectation
is 10% and 30% overhead for HDF5 and NetCDF respectively.

Tests on Lustre file systems found the optimal configuration for a single shared output file was to
use maximum striping and ensure I/O operation and stripe sizes are in accordance. Generally the
larger the amount of data written per writer, the larger the stripe size that should be used.

28

Considering peak performances, improvements of approximately 10% and 35% were seen when
using 4 MiB and 8 MiB stripe sizes rather than the default 1 MiB, when using large enough data
sets (i.e. 2563 array elements, or 128 MiB per writer).

Further relating to Lustre systems, users should be aware of the HDF5 performance issue and
should note that versions of NetCDF below 4.4.0 should be avoided on Cray Systems as they are
affected by this issue.

Finally, in contrast to Lustre, we found GPFS file system capacity to have no bearing on overall
parallel I/O performance.

8. Future Work

Various opportunities for further investigation were identified during the production of this
white paper. In particular, benchio could be extended to support the file-per-process I/O pattern,
to complement the current work done on the single-shared-file strategy and follow-up on the
bandwidth improvements in the load test shown in Figure 14. Additionally, write performance
has been the exclusive focus of this work due to its relative importance in typical HPC workflows
but there is scope for considering the equivalent read performance.

These topics are currently being investigated by the authors and will be included in a
forthcoming update of this paper.

References

[1] ARCHER HPC Resource, http://www.archer.ac.uk/, retrieved 28 Nov 2016
[2] EPCC at The University of Edinburgh | EPCC, https://www.epcc.ed.ac.uk/, retrieved 28 Nov

2016
[3] The University of Edinburgh, http://www.ed.ac.uk/, retrieved 28 Nov 2016
[4] Performance Computer, XC Series Supercomputers - Technology | Cray,

http://www.cray.com/products/computing/xc-series?tab=technology, retrieved 28 Nov
2016

[5] Cirrus | EPCC at The University of Edinburgh, https://www.epcc.ed.ac.uk/facilities/cirrus,
retrieved 19 Jun 2017

[6] Institute for Computational Cosmology Durham University - PhD and postgraduate research
in astronomy, astrophysics and cosmology,
http://icc.dur.ac.uk/index.php?content=Computing/Cosma, retrieved 28 Nov 2016

[7] DiRAC Distributed Research utilising Advanced Computing, https://www.dirac.ac.uk/,
retrieved 28 Nov 2016

[8] COSMA 6, https://www.cosma.dur.ac.uk/cosma6, retrieved 19 Jun 2017
[9] COSMA 6 – Hardware, https://www.cosma.dur.ac.uk/cosma6hardware, retrieved 19 Jun

2017
[10] RDF » UK Research Data Facility (UK-RDF), http://www.rdf.ac.uk/, retrieved 28 Nov

2016
[11] ARCHER » 5. UK-RDF Data Analytic Cluster (DAC),

http://www.archer.ac.uk/documentation/rdf-guide/cluster.php, retrieved 28 Nov 2016
[12] home | JASMIN, http://www.jasmin.ac.uk/, retrieved 28 Nov 2016
[13] EPCCed/benchio: EPCC I/O benchmarking applications,

https://github.com/EPCCed/benchio, retrieved 01 Nov 2016
[14] Jia-Ying Wu, Parallel IO Benchmarking, https://static.ph.ed.ac.uk/dissertations/hpc-

msc/2015-2016/Jia-ying_Wu-MSc-dissertation-Parallel_IO_Benchmarking.pdf, retrieved 22
Nov 2016

[15] David Henty, Adrian Jackson, Charles Moulinec, Vendel Szeremi: Performance of Parallel
IO on ARCHER Version 1.1, http://www.archer.ac.uk/documentation/white-
papers/parallelIO/ARCHER_wp_parallelIO.pdf, retrieved 01 Nov 2016

http://www.archer.ac.uk/
https://www.epcc.ed.ac.uk/
http://www.ed.ac.uk/
http://www.cray.com/products/computing/xc-series?tab=technology
https://www.epcc.ed.ac.uk/facilities/cirrus
http://icc.dur.ac.uk/index.php?content=Computing/Cosma
https://www.dirac.ac.uk/
https://www.cosma.dur.ac.uk/cosma6
https://www.cosma.dur.ac.uk/cosma6hardware
http://www.rdf.ac.uk/
http://www.archer.ac.uk/documentation/rdf-guide/cluster.php
http://www.jasmin.ac.uk/
https://github.com/EPCCed/benchio
https://static.ph.ed.ac.uk/dissertations/hpc-msc/2015-2016/Jia-ying_Wu-MSc-dissertation-Parallel_IO_Benchmarking.pdf
https://static.ph.ed.ac.uk/dissertations/hpc-msc/2015-2016/Jia-ying_Wu-MSc-dissertation-Parallel_IO_Benchmarking.pdf
http://www.archer.ac.uk/documentation/white-papers/parallelIO/ARCHER_wp_parallelIO.pdf
http://www.archer.ac.uk/documentation/white-papers/parallelIO/ARCHER_wp_parallelIO.pdf

29

[16] Mark Howison, Quincey Koziol, David Knaak, John Mainzer, John Shalf: Tuning HDF5 for
Lustre File Systems,
https://support.hdfgroup.org/pubs/papers/howison_hdf5_lustre_iasds2010.pdf , retrieved
03 Nov 2016

[17] Matthew Jones, Jon Blower, Bryan Lawrence, Annette Osprey: Investigating Read
Performance of Python and NetCDF When Using HPC Parallel Filesystems,
http://link.springer.com/chapter/10.1007%2F978-3-319-46079-6_12, retrieved 24 Nov
2016

Acknowledgements

The authors would like to thank Harvey Richardson of Cray Inc. for his invaluable advice on the
ARCHER file systems and software. We would also like to thank the Cirrus, DiRAC and JASMIN
facilities for providing time on their systems to run the benchmarks.

