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Abstract

Linear algebraic techniques are widely used in scientific computing, often requir-

ing large-scale parallel resources such as those provided by the ARCHER service.

Libraries exist to facilitate the development of appropriate parallel software, but use

of these involves intricacies in decomposition of the problem, managing parallel in-

put and output, passing messages and the execution of the linear algebra operations

themselves. In this paper a relatively simple application, Invertastic, is presented.

This is designed to perform a real operation: the inversion of a dense symmetric

positive definite matrix using multiple processors in parallel. The inversion of ar-

bitrarily large matrices is demonstrated, with the only constraint being the size of

compute resource available. Inversion cost is known to have O(N3) complexity,

which the results confirm allowing for some parallel communication overhead. In-

version of a 2,097,152 x 2,097,152 matrix (of size 32TB) took 6.4 hours on 2,048

compute nodes (49,152 cores). The Invertastic software is freely available online

and installed as a central package on ARCHER. It can be used directly (e.g. for

genomic studies where the matrix represents the genetic relationships between mul-

tiple individuals), or instead as a reference or template for the development of more

complex algorithms.
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1. Introduction

Many computational problems involve linear algebraic techniques, and libraries which

facilitate such operations have been available for many years. However, when operating

on large-scale parallel computers, it is often difficult for the user to quickly develop the

required software because of the complexities involved with driving these libraries cor-

rectly. This paper, and the associated software, is aimed at providing a relatively simple

test-case for large-scale linear algebra, in particular the inversion of a large-scale dense

symmetric positive definite (SPD) matrix, that can be used directly or as a reference.

One area where such operations can be directly useful is that of genomics. A construct

often employed in regression analysis is the Genomic Relationship Matrix (GRM). For a

study with N individuals, the GRM is a square SPD NxN matrix which, for each pair of

individuals, provides a measure of genomic correlation. This can then be used together

with phenotype information for regression, with many techniques requiring that the in-

verse of the GRM is calculated (see e.g. [1] and [2]). Traditionally, the GRM would be

constructed using known pedigree information, and would hence have a relatively sparse

structure. However, with the recent revolution in sequencing, dense GRMs can be con-

structed where nonzero genomic relationships exist even between distant individuals. The

number of individuals continues to dramatically increase as sequencing costs decrease.

For sparse matrices, there exist inversion techniques that take advantage of the sparsity to

minimise memory usage and compute time; however for dense matrices, as N becomes

large it is necessary to distribute the memory and compute requirements across parallel

compute clusters or supercomputers.

In this paper Invertastic, a utility for inverting large-scale dense SPD matrices using

parallel computing techniques and libraries, is introduced. Invertastic is a freely-available

utility that, if not used directly, may be a good starting point for those wishing to imple-

ment different or more complex algorithms. The source code is freely available under

the Apache 2 open source licence [3]. Invertastic is also installed as a centrally available

ready-to-use package on the ARCHER UK national supercomputing facility.

Section 2 describes the structure of Invertastic, and the computational performance is
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presented in Section 3.

2. Background and Methods

Parallel computers comprise multiple interconnected nodes, each (similar to a personal

workstation) containing multiple cores (perhaps across multiple chips), where each core

can directly access memory local to the node, but not that of remote nodes. Parallel

computing algorithms exploit multiple nodes to solve a single problem by distributing

work and data across the nodes, where parallel communications exchange data between

nodes as necessary.

Parallel libraries aide this process: MPI [4] and BLACS for message passing, where

the latter is a lightweight layer on the former, required by PBLAS and ScaLAPACK

which is used for linear algebra [5][6]. MPI-IO is used for parallel I/O operations. The

base language used is C.

Algorithm 1 The steps performed by Invertastic to perform a parallel inversion of an SPD
matrix. The prefix P indicates the use of global parallel communications: otherwise the
step is performed independently on each local sub-matrix.

1: P Init comms, MPI-IO and local memory
2: if “–input filename” option specified then
3: P A←MPI-IO matrix on disk
4: else
5: A← random init
6: P A←pgeadd A + AT (make symmetric)
7: increase diagonal of A to make positive definite
8: if “–check” option specified then
9: Â←copy A (for later verification)

10: P LLT ←pdpotrf A
11: P A−1 ←pdpotri LLT

12: if “–output filename” option specified then
13: P matrix on disk←MPI-IO A−1

14: if “–check” option specified then
15: P B←pdsymm A−1Â
16: Local element-wise comparison of B with I
17: P Finalise comms and memory
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Algorithm 1 shows the steps performed by the utility. The main inversion is performed

using the ScaLAPACK library in steps 10 and 11. Cholesky factorisation (pdpotrf rou-

tine) is used to decompose the matrix to the form A = LLT where L is a lower triangular

matrix. This is then used to then determine the inverse A−1 (with the pdpotri routine).

Before these steps, the matrix must exist in distributed form across the parallel computer.

For regular usage, the --input <filename> option will be specified by the user, and

the file is read in parallel using MPI-IO operations (line 3). A block cyclic distribution

(supported by both MPI-IO and ScaLAPACK) is used, with block size 128 in each of

the two dimensions. Similarly, after the inversion the resulting inverse is written to file

(line 13). When no input file is specified, to allow performance benchmarking and testing

the code will create an SPD matrix on-the-fly using random numbers (lines 5-7). If the

--check option is specified, the code will multiply the original matrix by the resulting

inverse, compare this product (element-wise) with the expected identity matrix, and print

the maximum deviation.

3. Results and Discussion

The UK national supercomputing facility, ARCHER, is a Cray XC30 architecture com-

prising 4,920 compute nodes, each featuring two Intel 12-core E5-2697 v2 (Ivy Bridge)

series processors (i.e. a total of 118,080 compute cores). Nodes are tightly coupled via

the Cray Aries interconnect. Each matrix is represented in Invertastic using NxN double

precision (8 byte) values, and the software allocates 3 separate matrix storage areas, so

24N2 bytes is required. On ARCHER, each node has access to 64GB of memory, so the

largest possible submatrix per node is 46,000×46,000. As N increases, the the number

of nodes is increased accordingly to acquire enough memory. The Cray MPI library is

used, and the linear algebra libraries are provided through the Intel Math Kernel Library.

A separate MPI task is assigned to each core, such that there are 24 MPI tasks per node.

Figure 1 shows the cost of computing the matrix inverse with increasing N. The

smallest matrix has N=32,768 on a single node (requiring 24GB). For the second smallest

matrix, N is doubled to 65, 536 and use 2 nodes, with 48GB per node. N is then doubled
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Figure 1: The cost of Invertastic for dense SPD matrix inversion on ARCHER. The total
measured time (in node hours) is plotted for a range of N, where the square matrix is
of size NxN. The number of nodes (each containing two 12-core Intel Ivy-bridge CPUs)
increases with the matrix size. Also plotted is a projection of the cost using only the
smallest measured result as a baseline and assuming O(N3) complexity.

several further times, each time increasing the node count by a factor of 4 (retaining

48GB per node), up to the largest matrix with N=2,097,152 on 2,048 nodes using a total

of 32TB of memory. On each node all 24 cores are utilised, i.e. the largest result uses

49,152 cores.

The cost is given in node hours (the number of nodes multiplied by the number of

hours runtime). This cost can be directly translated to a monetary figure, where the ex-

change rate varies from around £0.48 to £2.40 per node hour, depending on the mode of

access to ARCHER.

The computational complexity of matrix inversion is O(N3). Therefore, the cost mea-

sured on a single node can be used to project a predicted cost for larger N via the mul-

tiplicative scaling factor (N/N1−node)3, where N1−node is the size used for the single-node

problem. This projection, which is plotted for comparison, assumes perfect parallel scal-

ability, and the deviation of our measured results gives an indication of communication
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overhead caused by the distribution across nodes.

For our four largest problems, in order of increasing problem size, this overhead is

15%, 17%, 27% and 43%: significant but far from debilitating. The largest 2,097,152

X 2,097,152 matrix was inverted in 6.4 hours using 2,048 nodes: this would be reduced

to 4.5 hours with perfect scalability. Note that, while power-of-2 sizes are chosen for

performance analysis, all sizes are supported and there is no discernible performance

advantage from this choice.

Since this procedure involves reading/writing large matrices from/to disk, it is imper-

ative to not only use parallel I/O within the application, but also to ensure appropriate

settings regarding how each file is handled by the parallel filesystem: otherwise the avail-

able bandwidth can be throttled by orders of magnitude [7]. Here, with use of MPI-IO

combined with properly configured file striping, the I/O overhead is recorded to be rela-

tively small at around the 10% level.

For validation, the resulting inverted matrix is multiplied by the original matrix with

the result compare the result with the expected identity matrix. This check has been per-

formed up to N=524,288, where the maximum element-wise difference (due to rounding)

is 1.6 × 10−14. This is seen to increase only sub-linearly with N, giving confidence that

it remains many orders of magnitude less than the typical error due to noise in the data

itself, even for large matrix sizes.

For even larger matrix inversions, more nodes can simply be employed to provide

the required memory. The parallel communication overhead will continue to grow as the

number of nodes increases, meaning further deviation from the ideal N3 scaling, but in

terms of feasibility the only limiting factor is the size of the compute resource available.
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