
Technical report

Mark Filipiak1, Francesc Levrero-Florencio2,3, Lee Margetts4, Pankaj

Pankaj2

1Edinburgh Parallel Computing Centre, The University of Edinburgh
2Institute for Bioengineering, School of Engineering, The University of

Edinburgh
3Department of Computer Science, University of Oxford

4Mechanical and Aeronautical Engineering Division, School of Earth and

Environmental Sciences, University of Manchester

April 28, 2017



2 Implementation of generic solving capabilities in ParaFEM eCSE06-04

1. Abstract

The ParaFEM finite element analysis package (parafem.org.uk) has been modified

to use the preconditioners and linear solvers from PETSc (www.mcs.anl.gov/petsc).

ParaFEM currently possesses two different iterative solvers: conjugate gradients and

BiCGSTAB(l), both with Jacobi preconditioning. The addition of PETSc solvers provides

a wide range of solvers and preconditioners, including parallel direct solvers available

via PETSc’s interface to external packages. Performance comparisons between the corre-

sponding ParaFEM and PETSc solvers show that they take similar times and have similar

time scaling but that the PETSc solvers have poorer memory scaling, requiring three times

more memory at large process counts – ParaFEM uses an unassembled stiffness matrix

but PETSc uses an assembled stiffness matrix, and thus requires extra memory for tem-

porary storage during the assembly. Other solvers and preconditioners available using

PETSc were tested but none, even parallel sparse direct solvers, showed better overall

time performance than conjugate gradient with Jacobi. Algebraic multigrid precondition-

ing was not used – PETSc uses smoothed aggregation, which for vector problems (e.g.

solid mechanics) needs the full set of degrees-of-freedom to be kept at each node and

ParaFEM removes restrained DOF to get a reduced set of equations.

2. Introduction

ParaFEM (parafem.org.uk) [2] is a freely available and portable library of subrou-

tines for parallel finite element (FE) analysis, which is written in FORTRAN 90 and uses

Message Passing Interface (MPI) as the parallelisation method. ParaFEM can be used

to solve various types of problems, including stress analysis, heat flow, eigenvalue and

forced vibrations. It has been ported to many high performance computing (HPC) sys-

tems. The ParaFEM library is accompanied by a large set of driver programs for different

FE problems documented in the book Programming the Finite Element Method [2].

ParaFEM currently possesses two different iterative solvers, which have already proven

to be highly scalable with the number of MPI processes. These solvers are the conju-

parafem.org.uk
www.mcs.anl.gov/petsc
parafem.org.uk


Implementation of generic solving capabilities in ParaFEM eCSE06-04 3

gate gradient (CG) and BiCGSTAB(l), both with Jacobi preconditioning. The CG solver

solves positive-definite matrices and BiCGSTAB(l) solves general, unsymmetric, matri-

ces. BiCGSTAB(l) is considerably slower than CG since it does many more operations

to solve a linear algebraic system.

Although the existing solvers scale well, a wider range of solvers was desired to deal

with any problem size and the wide range of possible types of linear algebraic systems

found in FE analyses. Some of the reasons why the addition of the solvers of PETSc [1]

was considered are:

• Direct solvers can be faster than iterative solvers for small systems, i.e. fewer than

∼2.5M degrees of freedom (DOF).

• When using FE, the same large strain solid mechanics problem can give rise to

different types of linear algebraic systems. For example, a system may be elastic

at low loads, and positive-definite (CG can be used), but when reaching buckling

or a limit point, it becomes positive-semidefinite and it may become indefinite in

the post-buckling regime (MINRES can be used, for instance). If damage or non-

associative plasticity is considered, the resulting linear algebraic system will be-

come unsymmetric after yield (BiCGSTAB(l) or GMRES can be used). In these

cases, there needs to be a choice of solvers available.

• There are many other preconditioners that can be used instead of Jacobi, for exam-

ple incomplete LU factorisation (ILU) and algebraic multigrid (AMG). These will

reduce the number of iterations of the solver but each iteration will be slower.

ParaFEM also possesses ARNOLDI and LANCZOS algorithms to solve eigenvalue prob-

lems, but in this eCSE project we have not extended the range of eigenvalue problem

solvers (which would require a package such as SLEPc).

With a wide range of available solvers and preconditioners, a general interface is

needed to choose each. There are several open source linear solver toolkits available

that can provide the wider range of solvers desired in ParaFEM (e.g. PETSc, Trilinos,

hypre. . . ). PETSc (www.mcs.anl.gov/petsc) [1] was chosen because it has a com-

prehensive set of scalable parallel solvers and preconditioners (including parallel direct

www.mcs.anl.gov/petsc


4 Implementation of generic solving capabilities in ParaFEM eCSE06-04

solvers via the external packages MUMPs and SuperLU), and up-to-date Fortran inter-

face, and is actively maintained and developed. PETSc also provides nonlinear solvers

(of the Newton type) and also load/time-stepping procedures; and these could also be

added to the ParaFEM-PETSc interface.

The problems that were used to test the efficiency of PETSc’s solvers are:

• A linear elastic solid system in a small strain regime. This is an example of a

positive-definite case.

• Steady-state cavity driven flow of an incompressible Navier-Stokes fluid case. This

is an example of an unsymmetric case.

• Large strain solid mechanics modelling of trabecular bone. This is an example of a

case which starts as positive-definite and becomes indefinite.

3. The ParaFEM-PETSc interface

The PETSc library can be used directly in a ParaFEM driver program but the structure of

most ParaFEM programs makes it possible to have a simple interface to the PETSc linear

solvers and preconditioners. The design of the ParaFEM-PETSc interface depends on the

characteristics of the two libraries, which are:

3.1. ParaFEM

• Two linear solvers are already available (CG and BiCGStab) and these were already

converted into subroutines (they are in-line code in the examples in [2]), and solver

choice is by conditional statements in the driver program.

• The solver sequence is always one of the following:

– Linear problems:

Create stiffness matrix K and vectors x, f

Set the entries in K

Solve Ku = f



Implementation of generic solving capabilities in ParaFEM eCSE06-04 5

– Nonlinear problems:

Create stiffness matrix K and vectors x, f

DO Newton-Raphson iterations

Set the entries in K

Solve Ku = f

END DO

– Load/time-stepping problems:

Create stiffness matrix K and vectors x, f

DO load/time step

Do Newton-Raphson iteration

Set the entries in K

Solve Ku = f

END DO

END DO

In all cases, there is only one matrix, one solution vector and one load vector. The

matrix structure is fixed (i.e. the mesh connectivity does not change throughout the

problem) but the matrix entries may change in nonlinear problems.

• The matrix is stored in unassembled form – each process has an array holding all

the element matrices for the elements on that process. The solution and load vectors

are held in assembled form – each process has its part of the global array holding

the vector. The load and solution vectors are converted between the global and

per-element form (used for the matrix-vector products) with the ParaFEM subrou-

tines gather and scatter. These subroutines use global data structures set up by

ParaFEM from the mesh connectivity data read at the beginning of the correspond-

ing driver program.

• The driver programs use a control file to set problem data, solver tolerances, etc. . .

• Equations corresponding to restrained degrees of freedom (i.e. homogeneous Dirich-

let BCs) are removed from the system.



6 Implementation of generic solving capabilities in ParaFEM eCSE06-04

3.2. PETSc

• Matrices and vectors are stored as objects (C structures), Mat and Vec.

• Matrices and vectors are stored in assembled form – this means that there is an ex-

tra step when assembling a matrix. It is still possible to use unassembled matrices

in PETSc but this would require creating a new matrix type and providing all the

operations needed; for example the matrix-vector product for the iterative solvers.

However, all the preconditioners provided by the PETSc expect an assembled ma-

trix.

• The memory needed to store the matrix needs to be allocated before the actual

assembly, otherwise the assembly becomes around 50 times slower.

• PETSc can use options set in a control file to set the solver and preconditioner used,

solvers tolerances, etc. . . The options are described in the PETSc documentation

[1].

• Tasks such as setting up matrices, vectors and solvers require calling several PETSc

subroutines in sequence in each case.

3.3. Interface design

• The structure of the driver programs is kept as close as possible to that in the ex-

amples in [2].

• The driver programs can be written to use the solvers in ParaFEM, or the solvers

in PETSc, or can choose between them at run time to do comparisons (subroutine

get_solvers).

• The ParaFEM matrix and vectors are converted to PETSc Mat and Vec structures

when using the PETSc solvers.

• The solve sequences in ParaFEM allow the PETSc subroutine calls to be wrapped

up in one interface call for each task. As an example, the solvers sequence for



Implementation of generic solving capabilities in ParaFEM eCSE06-04 7

load/time-stepping problems when using PETSc is:

Initialise PETSc

Create PETSc matrix K and vectors x, f

DO load/time step

Do Newton-Raphson iteration

Clear the global matrix

DO element

Calculate element stiffness matrix k_m

Add k_m to global matrix K

END DO

Complete the setup of K

Solve Ku = f

END DO

END DO

Table 1 lists the subroutines that provide the ParaFEM-PETSc interface.

• The standardised data structures in ParaFEM allow the PETSc data structures to

be held in one global data structure. This makes the interface even simpler – just

subroutine calls.

• Control of PETSc is by standard PETSc control file, not by specifying options

in the ParaFEM control file and translating them to PETSc – this would increase

the maintenance as PETSc is continually changing (e.g. addition and deletion of

solvers and preconditioners, changes in the options, even the API. . . ). Several

solvers and preconditioners can be listed in the control file and chosen during the

program execution using the p_use_solver subroutine.

• Direct calls to PETSc are still possible.

• PETSc nonlinear and load/time-stepping subroutines are not yet used.



8 Implementation of generic solving capabilities in ParaFEM eCSE06-04

Table 1: PETSc interface subroutines

Name Description

get_solvers Get the name of the solvers to use from the command line

p_initialize Initialise PETSc

p_create Create the PETSc matrix and vectors

p_zero_matrix Zero the PETSc global matrix

p_add_element Add an element matrix to the PETSc global matrix

p_assemble Assemble the PETSc global matrix

p_zero_rows Modify the PETSc global matrix and the load vector by the fixed
freedoms. The resulting matrix is not symmetric.

p_use_solver Choose one of the PETSc solvers specified in the .petsc configu-
ration file

p_solve Solve using PETSc

p_shutdown Destroy the PETSc data structures and finalise PETSc

4. Matrix pre-allocation

After a PETSc Mat structure is created, the memory needed to store the matrix needs

to be allocated. If sufficient memory is not allocated then, as PETSc adds entries to a

matrix, it will reallocate memory as required – this can increase time to add all the entries

by a factor of around 50. The amount of memory can be overestimated but any excess

memory is not freed after the assembly step – this means that more memory per process

is required and thus more computing nodes are required than are necessary for the actual

calculation. The amount of memory needed is approximated by estimating the number of

non-zero entries in each row of the matrix (and these are split into on/off process entries).

Three methods for estimating the number of non-zeroes were tested:

1. For each of the element types used in ParaFEM (Appendix B of [2]), the node

connectivity of a regular (almost regular for tetrahedral) mesh was calculated. For

example, for linear hexahedra, each node is connected to 26 others; for linear tetra-



Implementation of generic solving capabilities in ParaFEM eCSE06-04 9

hedra, each node is connected to approximately 14 others on average. For higher

order elements the connectivity of vertex nodes was used – this overestimates the

connectivity. To allow for mesh irregularity, an extra factor of 1.3 was applied –

this could be adjusted by the user. With this method, the fraction of non-zeroes that

are on-off-process cannot be estimated, so this effectively applied a further factor

of 2. This method is fast but overestimates the memory required by a factor of 3 in

total for the xx18 test case.

2. ParaFEM calculates the element-to-equation mapping (or pairing) in order to gather

and scatter vector data during the matrix-vector multiplication by the unassembled

matrix. The mapping was inverted to get the equation-to-element mapping. The

composition of these two mappings gives an equation-to-equation mapping from

which the non-zero entries in the assembled matrix can be extracted. The partition-

ing of elements and equations is also defined by ParaFEM, and thus the number

of on-process and off-process non-zeroes in each row can be found. This gives an

exact estimate of the memory to be pre-allocated. The element-to-equation map-

ping is distributed and, before it is inverted, all the elements that contain equations

on a particular process need to have their part of the mapping sent to that process

(this is effectively setting up element haloes). The inversion of the mapping is done

by sorting an array of element-equation pairs by equation. The composition of the

mappings is combined with the counting of non-zero entries. The slow steps are

the sorting to invert the mapping, and the composition and counting.

3. PETSc 3.7 (installed after method 2 was developed) has a MATPREALLOCATOR

matrix type which can be used to calculate the pre-allocation for the actual ma-

trix by doing a matrix assemble but not actually setting aside space for the val-

ues. The stash of off-processor matrix elements (see below in the discussion of

the peak memory use in PETSc) still needs to be created and distributed, so use

MATPREALLOCATOR is slower than the hand calculation. The pre-allocator matrix

also uses up more peak memory than the actual matrix (about 30% more at large

process counts).



10 Implementation of generic solving capabilities in ParaFEM eCSE06-04

Method 2 is currently used because it is faster and uses less peak memory but method 3

would have been used instead if it had been available earlier.

5. Tests and performance

The PETSc solvers can be used in all the ParaFEM driver programs (except for eigenvalue

problems). Three types of problems have been tested:

• Linear elasticity (xx18)

• Steady-state incompressible fluid flow (xx17)

• Nonlinear elasto-plasticity (xx15)

All the tests were done on the ARCHER Test and Development System (TDS). This has

the same hardware and software as ARCHER but consists of one cabinet with 43 nodes

(1,032 cores) and is lightly loaded. The communications bandwidth on ARCHER would

be about half that on the TDS (ARCHER scheduling does not put all requested nodes in

one cabinet, and ARCHER is heavily loaded) so the performance results should be treated

as an upper bound for the performance on ARCHER.

5.1. Program xx18

This is Program 12.1 of [2] with the addition of the PETSc interface and the ParaFEM

subroutine pcg_ver1. This program is a three-dimensional analysis of a linear elastic

solid, in this case a cuboid with a uniformly loaded patch at the centre of one face, made

up of 20-node hexahedral finite elements. A range of problem sizes can be generated,

from a small 53 elements grid for regression tests up to a 4403 elements grid for scaling

tests. The results shown in Fig 1 are for a 1003 elements grid (∼12M DOF). The solver

was CG with Jacobi preconditioning for ParaFEM and for PETSc.

Note that the PETSc error tolerance is for the preconditioned residual, while the

ParaFEM error tolerance is for the un-preconditioned (“true”) residual – the same toler-

ance was used for both solvers after the appropriate conversion. The converged displace-



Implementation of generic solving capabilities in ParaFEM eCSE06-04 11

Figure 1: Time and memory scaling of CG/Jacobi for xx18 with 1003 elements. Time
is the sum of the matrix assembly, preconditioner setup and solver times. Memory is
the peak memory use. The used system is a Cray XC30, 8 Intel E5-2650 v2 processors
(4 nodes) with 12 cores per processor. The processes were distributed equally across 8
nodes, so 1 processes uses 1 node, 2 processes use 2 nodes, . . . , 16 processes use 8 nodes
with 2 processes per node, etc.

ment fields from the PETSc and ParaFEM linear solvers matched within the specified

tolerance.

The PETSc version of the CG/Jacobi is ∼30% faster than the ParaFEM version for

this case but both have the same time scaling. Note that the slowdown seen above eight

processes is an artefact of the distribution of the processes across nodes: as the number

of processes per node increases, the memory bandwidth per process is reduced (and FE

codes are generally memory bound); and Turbo Boost is enabled on ARCHER processes,



12 Implementation of generic solving capabilities in ParaFEM eCSE06-04

so that the clock speed will increase when fewer cores on a processor are active.

PETSc requires much more memory as the number of processes increases. The peak

memory occurs during the assembly of the stiffness matrix – off-process entries are stored

temporarily as elements are added with p_add_element and then distributed with p_-

assemble. The relative amount of temporary storage depends on how the mesh is par-

titioned among the processes but will always increase with increasing numbers of pro-

cesses. On distributed-memory computers (e.g. clusters), the total memory available will

usually increase faster than the peak memory requirement.

Some tests were made of the performance of other solvers and preconditioners avail-

able in PETSc with a small test case of 203 elements (∼100K equations) – all of the

following were slower than CG/Jacobi:

• CG/block-Jacobi

• MINRES/Jacobi

• GMRES/ILU – the only parallel ILU (incomplete ILU) preconditioner available in

PETSc is hypre’s PILUT, which does not preserve symmetry so GMRES was used

as the solver.

• MUMPS and SuperLU DIST parallel sparse direct solvers – these are also slower

than CG/Jacobi, even when the latter uses a very small convergence tolerance

The algebraic multigrid preconditioner in PETSc uses smoothed aggregation. This can

be used for scalar problems (e.g. heat conduction) in ParaFEM but not vector problems

(e.g. solid mechanics) because the full set of degrees-of-freedom needs to be kept at each

node and ParaFEM removes restrained DOF to get a reduced set of equations.

5.2. Program xx17

This is Program 12.6 of [2] with the addition of the PETSc interface and the ParaFEM

subroutine bicgstabl_p. This program models three-dimensional steady-state flow of

an incompressible fluid in a driven cavity, discretised with Taylor-Hood elements (20-

node hexahedra for velocity, 8-node hexahedra for pressure). A range of problem sizes



Implementation of generic solving capabilities in ParaFEM eCSE06-04 13

can be generated, from a small 103 elements grid for regression testing to a 1003 ele-

ments grid for scaling tests. This problem is nonlinear and is solved using a Newton-

Raphson scheme. The matrix for the linear solver in each Newton-Raphson iteration is

unsymmetric and the solver used was BiCGStab(l = 4) with no preconditioning (Jacobi

preconditioning gives poorer, or none, convergence for this unsymmetric, saddle-point

problem).

For this case there are non-zero restraints (the velocity of the driven boundary). These

are handled in the same way by ParaFEM and PETSc – the corresponding rows of the

matrix are zeroed and the effect of the restraints is added to the RHS vector.

The small, medium and large cases were tested. In the small case the results are the

same for ParaFEM and PETSc within the solver tolerance, but in the medium and large

cases there are differences larger than the solver tolerance. Tests with ordered reduce

operations (using the Cray MPI environment variables MPICH_ALLREDUCE_NO_SMP and

MPICH_REDUCE_NO_SMP) and with an ordered version of the ParaFEM scatter operation

showed similar differences between ParaFEM and PETSc. The BiCGStab(l) algorithm

in PETSc is a modified version, which may explain the differences – when using PETSc

the solver diverges at a particular Newton-Raphson iteration. This causes more Newton-

Raphson iterations and PETSc is two times slower than ParaFEM overall (note that the

number of iterations reported by PETSc count the l iterations at each step, so the value is

l times the corresponding value reported by ParaFEM). Further work is needed to resolve

the numerical differences and the cause of the solver divergence.

5.3. Program xx15

This is an experimental program, still under development, that will become a new pro-

gram example in [2]. xx15 is a large strain elasto-plasticity driver program which is

currently being used for multiscale modelling of trabecular bone. xx15 uses a plasticity

algorithm and implements a UMAT-like subroutine, which means that most (with a few

restrictions) user-defined elasto-plastic constitutive law can be implemented. Three con-

stitutive laws are currently available: linear elasticity, linear elasticity with an eccentric-

ellipsoid yield surface with linear hardening, and linear elasticity with a von Mises yield



14 Implementation of generic solving capabilities in ParaFEM eCSE06-04

surface with nonlinear hardening.

Elasto-plastic simulations in solid mechanics are inherently nonlinear and solved in

(pseudo-)time; thus, several load (or displacement) increments must be performed to

track the solution. Since implicit time integration is used, an iterative solution (currently

Newton-Raphson) for nonlinear equations has to be used within each load increment in

order to obtain a converged solution. Consequently the number of times an algebraic

system needs to be solved equals the number of load increments multiplied by the corre-

sponding number of Newton-Raphson iterations required for each increment. The prob-

lems considered comprised of a fixed number of load increments (typically 50 or 100)

and each load increment typically requires from two to five Newton-Raphson iterations,

depending on the nonlinearity of the solution at that stage.

xx15 is used in solving mechanical systems involving buckling and elasto-plastic

problems which may present softening. For example, bone is known to suffer from mi-

crocracking (which can produce softening) and buckling/structural failure (or in math-

ematical terms at least one eigenvalue of the stiffness matrix becomes zero). Systems

with a softening response will have both positive and negative eigenvalues. The result-

ing linear algebraic systems are indefinite systems, which become unsymmetric when a

damage model or non-associative plasticity is used. The addition of the PETSc gives a

range of solvers so that the fastest solvers can be used at each stage: CG can be used dur-

ing the linear stage (matrix is positive-definite), SYMMLQ or MINRES during buckling

(indefinite), and eventually BiCGStab or GMRES if the matrix becomes unsymmetric.

In xx15 fixed displacements (rather than loads) are incremented and non-zero re-

straints are used to represent these displacements. Unlike xx17, these non-zero restraints

are handled separately, which means that a small ancillary array is needed when using

PETSc (otherwise a full ParaFEM-type stiffness matrix would need to be kept as well as

the PETSc stiffness matrix).

Three small cases were used for validation against the ParaFEM solvers and one large

case (simulation of the mechanical behaviour of trabecular bone) was used for scaling

tests. The small cases were:

• One element in compression and tension – eccentric-ellipsoid yield surface



Implementation of generic solving capabilities in ParaFEM eCSE06-04 15

• Several elements constant strain case – eccentric-ellipsoid yield surface

• Necking of a cylinder – von Mises yield surface

The results using ParaFEM and PETSc versions of CG/Jacobi matched to within the

solver tolerance.

The orthopaedic engineering research group at The University of Edinburgh uses

ParaFEM to simulate the mechanical behaviour of trabecular bone. The detailed ge-

ometry generated through X-ray microtomography is used to assess the response of bone

to mechanical loads at the microstructural level. A set of images describing the micro-

architecture of a small cylindrical sample of 20 mm of height and 10 mm of diameter can

contain ∼100M degrees of freedom. The test case used here is a smaller sample, con-

taining ∼7.5M elements (8-node hexahedra) and ∼26M DOF. The load was kept in the

range where the stiffness matrix remained positive-definite, so CG/Jacobi could be used.

Figure 2 shows the time and memory scaling, which is similar to that seen for the xx18

program. In this case the PETSc solver is around 10% slower than the ParaFEM solver at

large process counts but both scale up to 1,000 processes. The peak memory needed by

PETSc is again about three times that needed by ParaFEM.

6. Discussion

The addition of PETSc was eased by the PETSc Fortran interface, simple control structure

in ParaFEM, and use of the PETSc control file. It was made more difficult by the need to

pre-allocate memory for the matrix and the handling of non-zero restraints.

ParaFEM’s unassembled matrix solvers are competitive with PETSc’s assembled ma-

trix solvers – importantly, the ParaFEM solvers use much less peak memory than the

PETSc solvers. An unassembled matrix type could be added to PETSc and used with the

existing solvers (the matrix-vector product would have to be written) but most of PETSc’s

preconditioners need an assembled matrix to set up and apply the preconditioner (the ex-

ception is Jacobi – it is easy to extract the diagonal). The test cases all used Jacobi pre-

conditioning – other preconditioners (or using direct solvers) were slower overall. The



16 Implementation of generic solving capabilities in ParaFEM eCSE06-04

Figure 2: Time and memory scaling of CG/Jacobi for xx15 with ∼7.5M elements. Time
is the sum of the matrix assembly, preconditioner setup and solver times. Memory is the
peak memory use. Cray XC30, Intel E5-2650 v2 processors with 12 cores per processor.

algebraic multigrid preconditioner in PETSc was not tested – it uses smoothed aggrega-

tion, which needs the full set of DOF to be kept at each node, and ParaFEM removes

restrained DOF to get a reduced set of equations. Using algebraic multigrid should give

improved performance but would require a radical change in the ParaFEM design.

The techniques developed here may be useful for interfacing PETSc to other FEM

programs. The main points are:

• Use PETSc’s pre-allocation calculator – this is slower than the algorithm developed

here but is much easier to use

• Use PETSc’s control file to choose solvers and preconditioners

• Wrap up PETSc as much as possible to look like the FEM program code but leave

the ability to use PETSc directly



Implementation of generic solving capabilities in ParaFEM eCSE06-04 17

• PETSc provides load/time-stepping and nonlinear solvers – these could be used

but they currently do not include arc-length methods, which are interesting from a

structural point of view

7. Getting the ParaFEM library with the PETSc

interface

It is recommended to first register on the ParaFEM website (http://parafem.org.uk).

The ParaFEM code is available on SourceForge in the Subversion repository https:

//sourceforge.net/projects/parafem. The ParaFEM-PETSc interface is in the

PETSc branch – this will eventually be merged into the trunk. The current stable revision

of the PETSc branch is 2237.

8. Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER UK Na-

tional Supercomputing Service (http://www.archer.ac.uk).

References

[1] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris

Buschelman, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,

Matthew G. Knepley, Lois Curfman McInnes, Karl Rupp, Barry F. Smith, Stefano

Zampini, and Hong Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc,

2016. URL http://www.mcs.anl.gov/petsc.

[2] I. M. Smith, D. V. Griffits, and L. Margetts. Programming the Finite Element Method.

Wiley, 2013.

http://parafem.org.uk
https://sourceforge.net/projects/parafem
https://sourceforge.net/projects/parafem
http://www.archer.ac.uk
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

