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Abstract

This report describes libcfd2lcs, a general purpose numerical library that per-

forms the calculations needed to extract Lagrangian Coherent Structures (LCS) from

time dependent flows. libcfd2lcs is designed to work with two or three dimensional

hydrodynamic datasets produced by computational fluid dynamics (CFD) simula-

tions or experimental measurements. Critically, it is capable of interfacing directly

with a distributed memory CFD application, allowing for parallel, on-the-fly calcu-

lation of LCS. The library has been integrated with several research flow solvers and

tested for a variety of flows. The additional computational overhead introduced by

the library can vary significantly (4-44% additional wall clock time in our tests) de-

pending on the test/code, which we consider as not prohibitive. The library shows

good scaling efficiency (> 80%) for up to 1024 compute cores on ARCHER.

1. Introduction

A number of diagnostics have been proposed in recent years that allow transport and mix-

ing patterns to be objectively defined in unsteady or chaotic flows. One such family of

diagnostics, coined Lagrangian coherent structures (LCS) [8], represent the skeleton of

tracer trajectories and separate time dependent flows into regions of dynamically distinct

behavior [6, 7, 17]. When properly defined, they act as the locally most attracting or

repelling material surfaces in a flow, across which no mixing or transport occurs. In addi-

tion, as boundaries of dynamically distinct regions they provide an exceptional tool with

which to visualize and understand coherence in complex fluid motion. Although defini-

tions and techniques continue to evolve [2, 7], identification of LCS from experimentally

measured or numerically simulated flows has most often relied on the relation of these

special material surfaces to ridges in the finite-time Lyapunov exponent (FTLE) field.

The FTLE is an Eulerian measure that quantifies the local rate of fluid stretching between

initially adjacent Lagrangian trajectories. As a LCS diagnostic, FTLE ridges have led

to new understanding of a variety of geophysical, biological, aerospace, and industrial

flows [9, 14, 15, 16].
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Typical computation of the FTLE requires the advection of Lagrangian tracer parti-

cles in the time dependent flow in order to compute a flow map for a given time interval,

T = [t0, t1]. The flow map is then differentiated and used to compose the Cauchy-Green

deformation tensor, whose principal eigenvalue is related to the FTLE field [17]. For

large-scale, complex, three dimensional flows of general engineering interest, an enor-

mous number of tracer particles can be required to provide a high quality flow map from

which well-defined LCS can be extracted. In addition, for aperiodic, time dependent

flows, the LCS are also time dependent and should be recomputed with a new set of

tracer integrations in order to reveal their motion in time. Further complicating matters

is the fact that the LCS should be computed in both forward (t1 > t0) and backward

(t1 < t0) time in order to reveal both stable (repelling) and unstable (attracting) surfaces

in the flow. When done as part of a post-processing procedure, these factors can demand

a significant computational resource, and have so far limited the application of LCS to

mostly academic problems.

These challenges help to illustrate several scientific and computational benefits of the

integrated approach, recently proposed by Finn and Apte [4], where LCS diagnostics are

computed on-the-fly during a computational fluid dynamics (CFD) simulation. The key

benefit of this approach is that the LCS computation has access to the full spatio-temporal

resolution of the simulation, thereby reducing integration errors and producing LCS with

very high detail. Their technique utilized advanced techniques for flow map composi-

tion [1, 11] in order to incorporate the computation of LCS within the CFD solver in a

minimally intrusive way. Crucially, the additional overhead relative to the flow solver

alone (an unstructured DNS/LES code [12]) was modest (15-30%), and it was possible to

maintain good parallel scalability of the overall simulation with the added LCS computa-

tions.

This report describes libcfd2lcs, a new computational library that provides a general

implementation this integrated approach, allowing it to be utilized by a variety of different

hydrodynamic solvers. Users of the library create LCS diagnostics through a simple but

flexible Application Program Interface (API), and the library updates the diagnostics as

the user’s CFD simulation evolves. By harnessing the large scale parallelism of platforms



4 eCSE04-14: libcfd2lcs

like ARCHER, libcfd2lcs enables CFD practitioners to make LCS a standard analysis

tool, even for large scale, three dimensional data sets.

2. Computing the FTLE

To compute the FTLE, libcfd2lcs works with velocity fields, u(x, t), defined in two or

three dimensional domains. If we consider the time interval, t ∈ (t0, t1), the flow map,

Φ
t1
t0(x0, t0) is the function that integrates passive tracers from their initial position, x0, at

time t0 along pathlines to their “advected” position, x, at time t1,

Φ
t1
t0(x0, t0) = x0 +

∫ t1

t0
u(x(τ), τ)dτ. (1)

The flow map is then differentiated and used to compose the right Cauchy-Green defor-

mation tensor,

Ct1
t0(x0, t0) =

[
DΦ

t1
t0(x0, t0)

]∗ [
DΦ

t1
t0(x0, t0)

]
. (2)

Here, DΦ
t1
t0(x0, t0) is the Jacobian of the flow map evaluated at the initial tracer coordinate,

x0 and ∗ denotes the transpose. The principal eigenvalue of Ct1
t0(x0, t0) characterizes the

amount of stretching over this time interval of initially adjacent trajectories at t0, and the

average rate of repulsion is given by the corresponding FTLE,

σt1
t0(x0, t0) =

1
|t1 − t0|

log
√
λmax

(
Ct1

t0(x0, t0)
)
. (3)

The FTLE may be computed in forward time (t1 > t0), or backward time (t1 < t0) in

order to reveal repelling and attracting LCS respectively. To compute the backward time

FTLE during a CFD simulation that progresses only forward in time, an Eulerian level-set

treatment [4, 11], is used to extract the backward time flow map in libcfd2lcs.

In practice, it is useful to construct the time T flow maps, Φ
t0+T
t0 (x0, t0), from a se-

quence of N smaller time h flow maps, where h=T/N [1, 13]. This removes the need

to perform redundant tracer integrations when many concurrently evolving FTLE fields

must be computed (for example, to animate their evolution). Rather than store these flow
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map sub steps in memory, they are written to temporary binary files on hard disk and used

to construct the time T flow map as needed [1].

In view of more recent theoretical developments [7, 9], FTLE ridges should be viewed

strictly as LCS candidates, which can have the full properties of LCS under sufficient ad-

ditional conditions. Nonetheless, they have been broadly utilized and can be computed in

both two or three dimensions, whereas more recent definitions of LCS are not easily com-

puted in 3D [2]. Future extensions of libcfd2lcs to include more rigorous LCS diagnostics

should be possible, since most new definitions appear to also be based on properties of

the Cauchy-Green deformation tensor.

3. Implementation

Although the work of Finn and Apte [4] laid the foundation for the present work, libcfd2lcs

was implemented from scratch, and represented a significant code development effort.

The goal was to make libcfd2lcs a flexible but high performance “black box” for comput-

ing LCS diagnostics, and to make the library compatible with a wide variety of existing

flow solvers. The library’s full API is accessible from user applications written in either

Fortran or C, and the libcfd2lcs user’s manual [3] contains a complete syntax specifica-

tion and detailed description of each user accessible function. During development, the

library was tested using several analytically defined unsteady flows in two and three di-

mensions, including Arnold-Beltrami-Childress (ABC) flow and double gyre flow. These

flows provided the basis for a suite of example programs (written in both C and Fortran)

that are distributed with the library, which should help new users to develop their own

applications with libcfd2lcs.

3.1. The libcfd2lcs API

Algorithm 1 shows a typical usage pattern of libcfd2lcs by a CFD application. Af-

ter the user performs the usual initialization of their flow solver, a call is first made

to cfd2lcs_init to initialize the library’s data structure and parallel communications.

The next calls to cfd2lcs_set_option and cfd2lcs_set_param are used to set user-
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accessible options (ie, the interpolation function, or the integration scheme). The user

may then initialize any number of LCS diagnostics (ie. forward or backward FTLE fields,

particle tracers, etc) using calls to cfd2lcs_diagnostic_init. Once the user’s main

flow solver loop begins, calls to cfd2lcs_update utilize the latest velocity field to up-

date all LCS diagnostics. The user can stop the computation of specific diagnostics during

the simulation using a call to cfd2lcs_diagnostic_destroy, and can gracefully stop

all libcfd2lcs functionality using a call to cfd2lcs_finalize.

Algorithm 1: Typical usage of the libcfd2lcs API.
1 ! Start Of User’s Application
2 Establish user’s grid coordinates
3 Establish user’s boundary conditions
4 Establish user’s domain decomposition
5 call cfd2lcs_init(mpicomm,n,offset,x,y,z,bcflag)

6 call cfd2lcs_set_option(option,val)

7 call cfd2lcs_set_param(param,val)

8 call cfd2lcs_diagnostic_init(id,type,res,T,H,label)

9 ! User’s main flow solver loop
10 t = tstart;
11 while t < t f inish do
12 Establish new velocity field at time t
13 call cfd2lcs_update(n,u,v,w,t,cfl)

14 if Done With Diagnostic then
15 call cfd2lcs_diagnostic_destroy(id);

16 t = t + dt

17 call cfd2lcs_finalize

18 ! End Of User’s Application

3.2. Parallelization and data structure

The library is fully parallelized using a distributed memory model and MPI. To accom-

plish this, it was necessary to place some restrictions on the type of grid and velocity data

that the library can work with. Specifically, the data must be:

• Globally structured: Data must be organized globally in an i, j, k structured

format. Non-rectangular domains (corners, holes, etc), non rectilinear grids, and
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non-Cartesian geometries (ie, spherical coordinates) can be handled. An example

of using the library with non-rectangular boundaries and spherical coordinates can

be found in the /examples/ROMS/ directory.

• Co-located: All components of the velocity (u, v, w) must be located at the same

points in space. Staggered grid velocity data should therefore be interpolated to the

cell centers before passing to libcfd2lcs.

• Block-partitioned: Distributed memory partitions must be subdomains with edges

along constant i, j, or k indices.

Future extensions will hopefully relax some of these restrictions.

3.3. I/O

The library supports parallel read/write operations using either the HDF5 library or its

own native ASCII read/write routines. The HDF5 routines offer large scale parallel scal-

ability using a single file / multiple writers strategy and are recommended. For systems

without HDF5 support, or for debugging purposes, the ASCII I/O routines (single file

/single writer) may be used. Both file formats are readable by common visualization

programs (Matlab, Tecplot, etc).

4. Results

The library was tested with three different flow solvers to ensure that libcfd2lcs and its

API are compatible with a variety of scientific codes. In Table 1 and Figure 1 below,

we provide an overview of case studies that were completed. The overhead (wall clock)

associated with the libcfd2lcs computations relative to the entire simulation is reported

in Table 1, and can vary significantly depending on the problem/code considered. The

decay of Taylor vortices induced by entrainment of inertial particles (Figure 1a) was com-

puted using the CGS-DEM code [5]. This is a relatively expensive simulation, involving

computation of particle-particle collisions and particle-fluid coupling. Computing both
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forward and backward time FTLE fields for integration time T = 3s (3 times the in-

tegral timescale of the flow) and frequency T/h = 10 consumes only 4% of the total

simulation time. On the other hand, the turbulent jet simulation (Fig. 1b) performed with

MOBILE [10] and three dimensional isotropic turbulence simulation (Fig. 1c) performed

with TurboTrack3D [22] are themselves much faster. This means the LCS related com-

putations for similar T/h consume roughly 40% of the simulation time in these cases.

Although this is certainly not a negligible added overhead, it should be viewed in the

context of added value that high quality LCS results can provide.

Table 1: Summary of libcfd2lcs test cases, including the library overhead (% of simulation
wall clock) where applicable.

Flow solver Test case libcfd2lcs overhead

Analytic flow field ABC flow -

Analytic flow field Double gyre flow -

CGS-DEM (U. of Liverpool) Particle laden Taylor vortices 4%

MOBILE (U. of Bristol) Turbulent Jet 37%

TurboTrack3D (KTH, Stock-
holm & SZN, Naples)

3D Isotropic Turbulence 44%

Dataset (SZN, Naples) Tyrrhenian sea dataset -

Additionally, the library was used to compute LCS from a regional ocean model sim-

ulation (ROMS) [18, 19] dataset of the Tyrrhenian sea (Catanese et al, Submitted). Snap-

shots of the sea surface velocity at 1 day resolution were used to compute the attracting

FTLE fields for an integration time of T = 7days. A spherical to Cartesian coordinate

transformation was applied to the data before passing it to the library, and the sea-land

boundary was handled using the library’s MASK boundary type. The computation was

distributed on 16 cores. The sharp ridges shown in the FTLE field (Fig. 1d) illustrate the

capability of libcfd2lcs for post-processing existing datasets.
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(a) Turbulent breakdown of 2D Taylor vortices induced by inertial particles (green points) (CGS-DEM)

(b) Three dimensional turbulent Jet, center plane shown (MOBILE)

(c) 3D isotropic turbulence (TTrack3D) (d) Tyrrhenian Sea surface currents
(ROMS dataset)

Figure 1: Overview of results obtained with libcfd2lcs. Each figure shows contours of the
backward time FTLE field. Dark ridges indicate location of attracting LCS candidates.
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4.1. Parallel performance

The parallel scalability of libcfd2lcs was evaluated on ARCHER using two dimensional

analytic double gyre flow [20]. The domain is discretized with a uniform, 10242 Cartesian

mesh in the region [0, 2] × [0, 2]. The flow is started at at time t = 0, and at advanced

to t = 25s, with a constant time step of ∆t = 0.01. In two separate trials, forward

and backward time FTLE fields are computed with a temporal resolution T/h = 1 and

T/h = 10s for T = 15s. A representative forward time FTLE field is shown in Figure 2a

(a) Double Gyre Flow
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(b) Strong scaling: T/h = 1
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(c) Strong scaling: T/h = 10

Figure 2: Parallel performance of libcfd2lcs. (a) shows contours of forward time FTLE
field for the analytic double gyre flow. (b) and (c) show strong scaling efficiency as a per-
centage of linear efficiency for a 10242 problem with T/h = 1 and T/h = 10 respectively.
Both total efficiency and efficiency excluding I/O are shown.

Each trial was repeated using 1, 4, 16, 64, 256, and 1024 processors on ARCHER. The

strong scaling efficiency, E = t1/ (NCPU · tN)×100 is plotted vs the number of cores, NCPU ,

for the two different temporal resolutions in Figure 2b-c, with and without I/O costs. In

both cases, excellent efficiency is obtained up to 256 cores when I/O is excluded from the

figure. We presently cannot explain the drop in efficiency at 16 cores, or the super-linear

speedup observed for the T/h = 1 trial at 256 cores. In the case of T/h = 1, greater

than 80% scaling efficiency is maintained up to 1024 cores. For T/h = 10 (Fig 2c), it

appears that the degradation in the total efficiency for NCPU > 100 is due in large part

to I/O. Future work is needed in order to determine the optimal domain size per core for

read/write operations, and optimal systems settings such as the file striping parameters.
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The poor scaling for T/h = 10 at NCPU = 1024 is also due in part to costs associated

with constructing the time T flow map from time h substeps. It appears that for large

core counts, interpolation errors between subsequent flow-map substeps can sometimes

result in particles being erroneously tracked to the wrong processor’s subdomain, and the

procedure for correcting this does not scale well. A robust solution to this problem will

be the focus of future efforts.

5. Obtaining a copy of libcfd2lcs

libcfd2lcs is installed as a public module on ARCHER and can be loaded with the com-

mand module load libcfd2lcs/1.0. The source code is also available under the

terms of the GNU public license and can be downloaded from pcwww.liv.ac.uk/∼finnj/

code. A minimal list of prerequisites for building the library include i) MPI Fortran and

C compiler, ii) liblapack, iii) libhdf5 (optional). GNU Make is used for building the

library and platform dependent settings are defined in a Makefile.in for portability. A

user manual [3] and several example programs written in F90 and C are included in the

distribution.

6. Conclusions and future work

libcfd2lcs is a new computational library that enables researchers to integrate LCS analy-

sis in their fluid dynamics research by providing a toolbox for computing LCS on-the-fly

while a CFD simulation runs. This approach has several advantages over the traditional

post-processing approach to computing LCS, and should remove a significant barrier to

entry for deciphering unsteady and chaotic flow dynamics using LCS. The library has

been designed to be a general purpose tool, with a limited but easy to use API, and has

been tested with several research flow solvers. The relative overhead associated with the

library’s computations is problem specific and can vary with the flow solver, but has not

been found to be prohibitive. Good parallel scaling efficiency has been demonstrated for

up to 1024 cores, and further improvements in the flow-map construction algorithm as

pcwww.liv.ac.uk/~finnj/code
pcwww.liv.ac.uk/~finnj/code
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well as I/O tuning should enable larger scale-ups.

Development of libcfd2lcs is an ongoing effort, and we welcome contributions from

collaborators wanting to further develop its capabilities. Planned extensions include com-

putation of inertial LCS for particles with finite size and density, computations of strain-

lines and stretchlines following the recent theory described in [9], and generalization of

the approach to work with fully unstructured flow-solvers.
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