NEMO Regional Configuration Toolbox"
Harle, J.1, Nagella, S.? and Crompton, S.3

INational Oceanography Centre, Liverpool.
2STFC, Rutherford Appleton Laboratory, Didcot.
3STFC, Daresbury Laboratory, Warrington.

Abstract

A toolbox aiding users setting up lateral boundary conditions for a regional NEMO
(http://www.nemo-ocean.eu) ocean general circulation model has been developed. The tool is
written in Python with portability and sustainability in mind. The NEMO Regional Configuration
Toolbox (NRCT) has been developed from existing proprietary ad-hoc code improving the
flexibility of the tool, especially in term of the 10. An additional feature of the NRCT is to provide
access to remote data sets such as the climate model databases from the Climate Modelling Inter-
comparison Project (CMIP) 3 and 52that were used in recent Inter-governmental Panel of
Climate Change (IPCC) reports. Simple user defined datasets are employed without the need to
understand the methods for reading or writing the data. A GUI is also provided to allow the user
to define the regional ocean model domain. The NRCT provides an efficient method by which
users can setup lateral boundary conditions for near real-time regional NEMO ocean simulations
or to begin to perform detailed climate studies with a regional focus with minimal overhead; all
of which would be of great scientific benefit and lead to an increased impact of timely scientific
output.

1. Introduction

The delineation between coastal and global ocean modelling effort in the UK has
been increasingly blurred over the passed few years. The adoption of NEMO
(www.nemo-ocean.eu) as a community ocean modelling framework by the Met
Office, NERC and many other UKHEs has provided a self-consistent model code
with which to simulate the ocean from the global scale down to that of estuaries.
As a result the ability to set up regional ocean models within this framework in a
tractable manner is becoming increasingly desired within this community. This
project will provide a unique set of tools for NEMO users and developers within
NERC and UKHEs that currently make use of ARCHER. The toolbox will make
progress towards seamlessly setting-up and running forced regional ocean
simulations within the NEMO framework, making use of the connectivity and
computing power of ARCHER. The toolbox will be configured to access remote
data (e.g. via JASIM, CEDA etc.) required to force these regional simulations, thus
reducing the need for a multiple step process of transferring and pre-processing
data on multiple systems (e.g. in-house clusters or local workstations) before
running the final code of ARCHER.

To run a regional ocean model, external data at the edges of the domain are
required to provide information about conditions that may influence the
simulation e.g. temperatures, currents etc. These data are generally provided
from global ocean or climate simulations and are on the whole defined on a
coarser resolution model mesh. The core code to be developed and tested will

1 This work was funded under the embedded CSE programme of the ARCHER UK National Supercomputing
Service (http://www.archer.ac.uk)

2 http://cmip-pcmdi.llnl.gov/cmip5/

involve translating data from an external model source into a format suitable to
run a regional NEMO ocean simulation. The key annex to this code will be the
ability to access external model data remotely from wherever it may be held
using OPeNDAP. Although it is intended that this toolbox is command-line
driven, there is also scope to develop a GUI to complete the package.

This project will build on proprietary ad-hoc code (in Mathworks MATLAB),
largely developed in the NERC eScience GCOMS project (Holt et al, 2009), but
here translated to an open-source environment (Python). This will not only
benefit those employing it on ARCHER, but also wider NEMO community as a
whole (500+ users globally). This toolbox would facilitate users in accessing
remote data sets such as the climate model databases from CMIP3 and CMIP5
that were used in recent IPCC reports. This would allow users to begin to
perform detailed climate studies with a regional focus or to efficiently set up
near real-time simulations with minimal overhead; all of which would be of great
scientific benefit and lead to an increased impact of timely scientific output.

2. Software Development

The tool essentially uses geographical and depth information from the source
data (e.g. a global ocean simulation) and destination simulation (i.e. the
proposed regional NEMO model configuration) to determine which source points
are required for data extraction. This is done using a kd-tree approximate
nearest neighbour algorithm. The idea behind this targeted method is that it
provides a generic method of interpolation for any configuration of source ocean
model in order to set up a regional NEMO model configuration. Various options
are accessed either through a NEMO style namelist or a convenient GUI. The 10
abstraction in the toolbox allows the user to simply define where the relevant
datasets are held and the variables required without the need to understand the
methods used to read or write the data, be they local or held on a remote server.

Figure 1: Transfer of information from global simulation to the open boundary conditions
of aregional domain.

2.1 Port of proprietary code

The principal work package of the NRCT was to port various pieces of ad-hoc
code written in Matlab to the open source language of Python. In the process the
code was updated and many of the hardwired aspects of the original code were
removed. Two example data sets3 were constructed for benchmarking and
performance testing purposes. The data sets were also replicated with non-
standard metadata for development and testing outlined in Section 2.2. The code
was designed with the Anaconda Python distribution* in mind. As this was
already available on ARCHER we were able to benefit from the efficient
installation of any dependencies required by NRCT. It also allowed for the
provision of conda builds of the NRCT (see section 3).

Once the code had been ported the NRCT was used to produce open boundary
conditions using the example data sets. This was benchmarked against the
original Matlab code. Output from both codes produced comparable results with
the very minor deviations arising from numerical differences in the language
dependant methods used in some of the calculations. The NRCT was run
interactively on the Post Processing nodes on ARCHER and on local machines in
order to compare the performance of the Python code relative to the Matlab.
Both codes performed similarly as a bulk of the processing is devoted to the
reading and writing of NetCDF files, which uses very similar protocols in each
case. One inefficient found when profiling the Python code with the example data
was that around 20% of the overhead was attributable to the initialisation of the
matplotlib external library. As the example data set is small and only a truncated
time period was used in the processing, this overhead would be reduced in real
world examples. However, we plan to investigate whether this overhead can be
minimised in absolute terms. Other approaches to optimisation were also
considered, but as yet not been fully tested as were deemed to be outside the
scope of the project brief:

* The simplest way of attaining a code speed up would be to implement
some form of parallelism. The most obvious and easiest to achieve would
be to introduce this is to the time loop in the routines. In general the user
will be reading and writing time stamp information over many years, so
the time loops within the code could quite easy approach 0(100).

e Alternatively, there is the much more complex way of implementing
parallelisation by splitting of the spatial grid and doing interpolation in
parallel. The advantage of this approach would be that it is less memory
intensive than the previous example, which may not been such an issue
on the Post Processing nodes of ARCHER, but would be if this code were
to be adopted by users to use locally.

* A quick performance gain may also be had by the use of the Python
NUMBAS package that would allow a degree of speed up around the array

3 http://esurgeod.noc.soton.ac.uk:8080/thredds/catalog/catalog.html?dataset=PyNEMOtest
4 https://www.continuum.io

5 http://numba.pydata.org

oriented code by just-in-time compiling to native machine instruction.

2.2 Remote Data Access

In the proprietary software the I0 implementation was rudimentary and limited
to a local collection of netCDF files. The second phase of this project was to allow
the user to exploit remote data portals using OPeNDAP and to provide increased
flexibility in defining data sets. To achieve this, a degree of 10 abstraction was
implemented with the option to define an entire data set using NcML (netCDF
markup language). The use of NcML would effectively wrap a data set up within
a descriptor file.

An NcML document is an XML representation of the meta data held within the
NetCDF data file. By modifying the NcML file a data set that does not conform to
the traditional NEMO format can be used in the NRCT. The other benefit of the
NcML is to allow data aggregation given a data directory and search expression.
This functionality was only available to local data sets. An alternative method
had to be implemented to perform a similar operation on remote data sets. Again
the methods employed for the 10 were abstracted away as to be no concern to
the user.

From the outset we wanted to keep the code base in native Python.
Unfortunately when it came to the I0 we were presented with a series of issues.
While there were various NcML parser routines available in python, many
partially written scripts to perform specific tasks, there was nothing like the
required functionality of the full Java NetCDF API developed by UNIDATA®. So in
order to progress the development we exploited a lightweight python package to
access java classes (pyjnius?). Ideally, we would have preferred to keep
everything in native python as this adds a layer of unwanted complexity and
overhead, but it was deemed the most appropriate and clean way forward within
the time constraints.

To provide similar functionally of the Java NetCDF Tool in terms of local data set
aggregation, the Python thredds crawler package was adopted to identify the
remote data required by the user when running the NRCT. To the user the syntax
of interface remains the same, but the abstracted method runs using different
subroutines. The example datasets used in the porting of the original code were
to be transferred to JASMIN to test the new method of 10 within the NRCT.
However, there was no THREDDS server available at the time, so an alternative
was sought at the National Oceanography Centre, Southampton. The NRCT
processing time was of the order 5 times longer when accessing the remotely
held data than when accessing the same data locally. This may not immediately
appear beneficial, but when considering that some source data sets can be the
order of Terabytes in size this method provides a useful and efficient mechanism

6 http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/

7 https://pyjnius.readthedocs.org

to access a subset of a larger dataset without the need to transfer the entire data
set locally.

The code was then further developed, using the flexibility within the NCML, to
provide a wrapper to non-native model output (i.e. the variable naming
conventions and meta-data differed to that of NEMO), such as those from CMIP5.
One of the original objectives was to demonstrate that access to the CMIP5
database was possible. However the hosting server (Earth System Grid
Foundation®) was taken down in 2015 due to security concerns and still was not
available by the end of the project. The code was successfully tested on one of the
existing example data sets on the remote THREDDS server in which all the meta-
data had been modified.

A simple Python GUI (Figure 2) was written to provide a suitable interface for
the user to define the input data sets required by the NRCT. This allows the user
to define the input dataset, without any knowledge of NcML syntax, through a
series of tabbed input boxes using variable names, paths and regular
expressions. Once the NcML file is generated the NRCT will chose the
appropriate 10 method depending on whether a local path has been specified. To
improve the flexibility of this interface an additional custom tab could be added
to capture any future user requirements. The idea of using the NcML to define
the output file could also be explored, allow the user to not only read in none-
native NEMO data, but write out files for none-NEMO simulations.

o @ PyNEMO NcML Generator

Define output file

Output filename Select file

Tracer Dynamics u Ecosystem Grid

Variable ice thickness
Source directory*
Includes subdirs Regular expression
Existing variable name* iicethic
Reset Add
Enable Tab Cancel Generate

Figure 1: The NcML Generator GUI provides a convenient interface by which the user can generate an XML
file describing the data set to be used by the NRCT.

8 http://esgflinl.gov

2.3 NRCT GUI

The NRCT is written to be run as a command line application driven by
information provided in a simple namelist file. This assumes that a mask file
defining the regional model domain already exists. It is often the case that the
user will wish to modify this mask file. In this final work package a GUI to the
NRCT was developed to allow the user to define a mask from scratch (Figure 3).
This provides user access not only to the namelist, but also the regional domain
bathymetry. Using various tool widgets the user can interactively define the
region that is to be simulated. Once the GUI is closed the underlying NRCT uses
the information provide to generate the open boundary conditions to the
selected regional domain. Various methods have been provide for the user to
define the regional domain:

* Simple rectangular box selection

* Polygon selection

* The selection of regions shallower than a namelist specified criteria

* The selection of regions shallower than the interface between the
coastal/shelf seas and the open ocean

These options are not mutually exclusive and can be used in conjunction with
each other allowing the user flexibility to define their domain boundaries.

e0e@ PYNEMO Settings Editor

w0 s3] #0000 + -0 yol0ee NEK «

&5 e %[7]

w0 Fase %[7]

hmin -107\@ |

sbot_min 1007‘@

sbot_max 700007‘@

he 15(107\@

stc_hgr tollatol_srcimesh_hgrne | [7|

det har rojectsatolimesh hgenc] | 7 |

dst_zgr jectsfatollinputs_dst.ncml D

RS :'S/am'mo"’sm/masmc‘Q a 1 655 1306 1058 2610 3263 3915 4567 5219 5872
T ST)

Bathymetry (units=metres)

[Save] [Close J

Figure 3: The toolbox GUI allows the users to define the regional ocean domain using a variety of
criteria.

The NRCT GUI has been successfully tested interactively on the Post Processing
nodes on ARCHER in setting up the following end-to-end example of a NEMO
regional simulation:

http://pynemo.readthedocs.io/en/latest/examples.html#example-2-lighthouse-reef

3. Usage

An overview of the software, its installation and examples of usage are provided
at: http://pynemo.readthedocs.org/en/latest/intro.html. As it has been written
with the Anaconda environment in mind the software can be installed on
ARCHER using conda install or built from source. At present it is advisable to
build from source, as the code is still being actively developed and the builds
used in the conda install process may be dated.

On ARCHER users can access the toolbox using the Anaconda environment:

module add anaconda
conda install -c https://conda.anaconda.org/srikanthnagella pynemo

from source:

svn checkout http://ccpforge.cse.rl.ac.uk/svn/pynemo/trunk/Python/
conda install -c https://conda.anaconda.org/srikanthnagella
thredds crawler

conda install -c https://conda.anaconda.org/srikanthnagella pyjnius
python setup.py install

There are builds for Linux, Windows and OSX providing none ARCHER users
with access. The alternative is to build from source and as the software is written
in Python is accessible by most.

4. Summary

The purpose of the NRCT is to provide an efficient method by which users can
setup lateral boundary conditions for near real-time regional NEMO ocean
simulations. The toolbox will allow users to begin to perform detailed climate
studies with a regional focus with minimal overhead. It is hoped that with
further development that this toolbox will be of great scientific benefit and lead
to an increased impact of timely scientific output.

An open source toolbox has been produce that can be run with existing open
source tools (Python, Java and OPeNDAP) that will benefit NEMO users accessing
the ARCHER super computer facility. It will also be made available to the wider
NEMO community via the Configuration Manager Workgroup within the NEMO
System Team. This will have several scientific benefits:

* The toolbox will facilitate NOC’s national capability ocean modelling
ability to develop and run high resolution regional forced models.

* Future projects using regional NEMO simulations on ARCHER will greatly
benefit from this development (e.g. the recently funded NERC standard
grant project: Recicle).

* [t will open up/assist the use of IPCC data do perform regional climate
studies, an area of great scientific and political interest.

* It will begin to provide tractability/traceability to the process and allow
rapid deployment for regional ocean simulations to provide timely

scientific output.

As the code is written in Python it is open source and accessible by the widest
possible number of users and developers (Python is being increasingly adopted
by the ocean modelling community). There is currently a large NEMO user
community (within NERC, UKHEIs and European Institutions) to exploit toolbox
and to carry any development forward into the future. In the short to medium
term the code will be maintained under National Oceanography Centre National
Capability funding, with code and documentation held centrally.

At present the NRCT has been publicised locally at the National Oceanography
Centre and at the Met Office and Plymouth Marine Laboratory, with a planned
visit to the British Antarctic Survey, Cambridge. Colleagues at the University of
Plymouth and CNRS, France have also accessed the tool in the initial testing
phase.

Future development:

To complete the NCRT an additional Python module is required to generate the
model mesh information for the regional domain. Once this has been written the
NCRT will provide and end-to-end method for providing all the data required to
perform a NEMO regional ocean simulation.

References

Holt et al. (2009), Modelling the global coastal ocean. Phil. Trans. R. Soc. A, 367, 939-951
doi:10.1098/rsta.2008.0210

