Technical Report on e-CSE project QSGW
Martin Liiders®", Mark van Schilfgaarde(®

(1) STFC, Daresbury Laboratory
(2) Kings College London

October 12, 2016

Abstract

Quasi-particle selfconsistent GW (QSGW) ia a novel methodology
for electronic structure calculations, which addresses many shortcom-
ings of the standard method, density functional theory. However, the
calculations are very compute intense. In this eCSE project, parallel
I/O using HDF5 and memory distributed parallelism using parallel
BLAS (PBLAS) and ScaLapack has been implemented.

1 Introduction

Computational materials science has evolved into one of the most ac-
tive and industry relevant fields of physics. For many classes of ma-
terials, the predictive power of density functional theory (DFT) is
sufficient to motivate its use for automated searches for novel materi-
als.

However, there are still many classes of materials, and also proper-
ties, for which DFT is not sufficient. Amongst the most most pressing
problem is the failure to describe excited states in semiconductors or
transition metal oxides. More generally, DFT (in its standard form)
does not — by construction — describe excitations. Another problem is
the failure to describe strongly correlated materials.

The Quasi-particle self-consistent GW (QSGW) is a novel theory,
perhaps the most promising one that is independent of DFT, which
has already proven successful for the calculation of band gaps and
density of states for a wide selection of materials. In contrast to DFT
it forms a natural bridge for extensions to other many-body effects
captured, e.g. by DMFT. Ground state properties such as the total
energy can be calculated with much higher accuracy than the LDA.

Over the past years QSGW has been implemented by Mark v.
Schilfgaarde. T. Kotani and coworkers. The resulting code is at the
basis of the current “Software for the Future” CCP9 flagship project,
which has the aim to turn the code into a user-friendly community
code. A preliminary version of the web site (soon to be advertised)
can be found lherel

This eCSE project is part of this bigger picture and focusses on
the parallelization of the code, and on adapting the code to large
multi-core HPC systems.

The central quantity of QSGWis the so-called self-energy,

i s
S(r, v, w) = o /dw'GO(r,r',w — YW (r,r' W)e (1)
i
which is given in terms of the Green’s function of a non-interacting

reference system,

Wi(r) Wi ()

2
w—eij:z'é’ ()

GOr, v/, w) = Z

and the screened Coulomb interaction, W (r,r’',w’), between the elec-
trons. Details about the method can be found in publications [2].

2

https://lordcephei.github.io

The most compute intense parts of the code calculate the follow-
ing equations, defining the self energy, ¥(w) in terms of the screened
Coulomb interaction Wy ;(q,w):

(Vgn|Z(W)[Vqm) =

BZ all
= Z Z Z(‘I’qm’q’q—k,n’Mﬁ<Mllf\1’q—k7n"Wq7m> X
k n I,J
%0 jdw’ 1
k /
% /_oo 2m Wiy (k, w)—w +w — eqokn £ 10 (3)

The screened Coulomb interaction, which is given as a matrix in
the product basis (labelled by I,.J) for each q and w is obtained
from the bare Coulomb interaction V(q) and the so-called polariza-
tion propagator II7 j(q,w), can be obtained by matrix inversion (an
underlined quantity represents a matrix in I and J):

W(q,o) = [L - V(q)(q.w)] " V(q). (4)
The polarization propagator I j(q,w), in turn, is defined by:

BZ occ unocc <M?\I’kn’\llq+k,n’> <\I/q+k,n’ ’q’k,nM;>

Mrs(@w) =3 > >

n w — (5q+k,n’ — 5k,n) +i0

k
BZ /] J
unocc occ <M;1‘Ifkn|\1jq+k7n'> <\I’q+k,n’ |\Ifanfll>

D3P

k n n —w = (Eq-i-k,n’ - Ek,n) — i

()

Here the Wy, are the single-electron wave functions resulting from
the non-interacting reference Hamiltonian Hy. The product basis M7
is obtained from products of pairs of single-electron wave functions.

The size of the matrices (MPWypn|Vqikn) scales with the 3rd
power in the system size (number of atoms in the simulation cell);
the computation time as the 4th power.

2 Previous work

In a previous d-CSE project on Hector, a basic parallelization over
the outermost loops, i.e. the loop over the g-vectors for which the
self-energy is calculated, and the k summation in the susceptibility

has been implemented. While these steps did speed up the code for
metallic systems (which require many g- and k-points) the project
brought to light a number of bottlenecks, which were not obvious in
runs for small systems and with low processor count:

e Parsing of the input files:
The original code openend and read keywords from the input files
whenever they were required in the code. While this approach
is no problem on few processors, it started being a problem at
larger processor counts.

e Sequential writing of output files:
The output of data became a bottleneck. A temporary workaround
of writing separate files per processor was implemented but did
not provide an acceptable solution for a user-friendly code.

e Memory bottleneck for large systens (many atoms):
The study of larger systems in terms of the number of atoms
poses two problems: larger systems require less g- and k-points,
hence making the parallelizatin less efficient, while at the same
time increasing the amount of data required for each point, even-
tuallly reaching the limitations of the memory per node

These bottlenecks motivated the current project, which set out to
address these points.

3 Current work

Due to the limited amount of time available in the eCSE project,
one goal was to achieve the above goals with minimal changes to the
overall structure of the code.

3.1 Global parallelization strategy
At its current state, the code uses (up to) 4 levels of parallelism:

1. Outer loop: q for which the gantity is to be calculated
2. Brillouin zone summation over k.

3. Parallelization over the basis functions I, .J and matrix distribu-
tion via PBLAS, ScaLapack

4. Possible threaded MKL library for the remaining BLAS calls
(not considered here)

To this end, the MPI_COMM_WORLD communicator is split into 3 lay-
ers of groups, corresponding to the q and k loop paralleliztion. The

processors beloning to one (q, k) group form the square grid for the
PBLAS parallelization.

3.2 Parsing the input file

The original input file parser was already implemented as a Fortran90
module, which encapsulated the file access. A new module has been
written which has the same interface as the old one, and hence can
easily replace all existing calls to the parser by changin the included
module.

However, the new module implements a new data structure which
represents the input file in memory. At the beginning of the code, this
data structure is populated by parsing the input file on the root pro-
cessor, and then broadcasting the data to all processors. Subsequent
calls to the parser no longer read the input file from disk, but only
access the data in memory. This avoids the bottleneck of all processes
trying to access the input file simultaneously.

3.3 Parallel I/O

The first main objective of the project was to implement parallel I/O
to the main parts of the code. In order to combine parallel I/O with
machine-independent files, we decided for the HDF5 format.

In order to lower the barrier for other developers to adapt the
HDF5 format, a small library has been written which encapsulates
a large part of the HDF5 related book-keeping and minimizes the
amount of code required by the application, while on the other hand
leaving enough flexibility to deal with different data types, and MPI
process configurations. The module does define the complex (kind=1.d0)
data type and establishes default values for certain HDF5 properties.

For the large (and distributed) arrays, the hyperslab methodology
is used to allow certain MPI processes to access parts of the array.

As within each q group the summation over k is performed us-
ing MPI_Reduce before the data is written, only those MPI processes
corresponding to the 1st k point for each q are accessing the HDF5
files.

Due to the fact that the number of processors per group is not
necessarily commensurate with the loop count, in general not all pro-

cessors will execute the same number of loop iterations. For this rea-
son, the access to the HDF5 files had to be set up as individual, as
opposed to collective, access.

3.4 Memory distribution

The second objective was to distribute the big arrays over the nodes
to facilitate the calculation of large systems, and at the same time
parallelize the generation of the matrix elements over the processors.

The largest arrays in the code are matrices between the product
basis and the single-electron wave functions: (MW, |V q k), Where
the number of product basis functions scales roughly linearly with the
number of single electron basis functions. Note, however, that M?,
Vyn and Uy g each scale linearly with the system size, the total
number of matrix elements scales as the third power.

To overcome the memory limit of the nodes, the distribution is
implemented via BLACS distribution of the arrays. For many of the
bottlenecks, it was sufficient to replace the zgemm BLAS3 calls by
corresponding pzgemm calls.

For the matrix elements (M Wy, |¥q k), the original code used
3-dimensional arrays for indices I, n and n’. For BLAS calls they were
treated as 2-dimensional, merging either the first or the second index.

For instance, code such as,

allocate(zzmel (ngb, nt, ntgxx))
allocate(zmel(ngb, nstate,ntqxx))
allocate(ppovlz(ngb, ngb))

call zgemm(’C’,’N’ ,ngb,nstate*ntqxx,ngb,
(1d0,0d0),
ppovlz,ngb,
zzmel ,ngb,
(0d0,0d0),
zmel ,ngb)

have been replaced by

type (PBLAS_DIMS_2D) :: zmel_dims, zzmel_dims, gb
integer, dimension(DLEN_) :: DESC_zmel, DESC_zzmel, DESC_ppovlz

gb make_PBLAS_dims (ngb,ngb)

zzmel_dims
zmel_dims

make_PBLAS_dims3(ngb,nt,ntqxx,2)
make_PBLAS_dims3(ngb,nstate, ntqxx, 2)

call myDESCINIT(ICTXT, gb, DESC_ppovlz, ierror)
call myDESCINIT(ICTXT, zmel_dims, DESC_zmel, ierror)
call myDESCINIT(ICTXT, zzmel_dims, DESC_zzmel, ierror)

call Pzgemm(’C’,’N’,ngb,nstate*ntqxx,ngb,
(1d0,0d0),
ppovlz, 1, 1, DESC_ppovlz,
zzmel, 1, 1, DESC_zzmel,
(0d0,0d0),
zmel, 1, 1, DESC_zmel)

The data structure PBLAS_DIMS_2D has been introduced to encapsu-
late information about the dimensions and the local array boundaries:

type PBLAS_DIMS_2D

integer :: global_r, global_c ! global dimensions
integer :: NB_r, NB_c ! block size

integer :: local_r, local_c ! local dimensions
integer :: lo_r, lo_c ! lowest index of slab
integer :: hi_r, hi_c ! highest index of slab

end type PBLAS_DIMS_2D

As seen in the code example, a number of helper routines have
been implememted, which set up the distribution scheme, or create
the PBLAS array descriptors.

A complication for the PBLAS implementation was that some rou-
tines of the code addressed contiguous sub arrays of the large arrays.

7

This is due to the fact that the product basis consists of different types
of functions (e.g. atomic and plane-wave like wave functions), which
require different treatment for setting up the matrices.

In order to prevent further complex book keeping, the decision
has been taken to break up the matrices avoiding the block cyclic
distribution, which could lead to several blocks being located on one
processor.

In this way, most routines could be converted to PBLAS simply
by replacing the BLAS calls by the corresponding PBLAS calls. Only
a few routines required explicit communication to swap submatrices
between the processors.

4 Results and Conclusion

Unfortunately, due to the average queuing times on Archer, it was
not possible to get enough timing information by the time of writing
the report to present a detailled study of the performance. Test runs
have been performed for a 16 atom and a 32 atom supercell of GaAs.
Preliminary results show, that the code is working and produces the
correct results.

The calculations even for the 16 atom cell is not possible without
either underpopulating the nodes, or using the memory distributed
verison of the code. Without underpopulating the nodes, calculations
become possible when using at least a 3x3 BLACS grid. Systematic
studies of the performance as function of processor count are ongoing.
Preliminary timing data for the calculation of the screened Coulomb
interaction and for the correlation energy are given in Table 1.

These results show a number of points:

e The calculation of W does not show any speedup with the num-
ber of cores. This indicates, that the time is dominated by the
I/O time. In the current implementation, the HDF5 writes had
to be independent due to incummensurate iteration counts of
the loops with respect to the processor number. An attempt to
bypass the problem by using independent communicators for the
various groups, lead to wrong results, indicating that some data
race conditions. The problem does not occur in the self energy
part, where the largest file is only read in, not requiring any
blocking.

Table 1: Wall clock times for calculations of the screened Coulomb interaction
W and the correlation part of the self energy, ¥, for a 16 atom supercell of
GaAs. N, and N}, are the number of processor groups used to parallellize the
loops over q and K points. Npacs is the linear dimension of the BLACS grid
used to disribute the large matrices, and Nyyqger is the factor for underpopulat-
ing the nodes. The total number of core is Nygtal = Ny X Ni X NEj acs X Nunder-
The times are given in hh:mm format. OOM indicates that the job was killed
with an out-of-memory message.

Ny, Ni Npracs Nunder | Nuipt | Niotar | Time (W) Time (X.)
5 5 2 1 100 100 OOM in queue
5 5 2 2 100 200 3:21 3:37
5 5 3 1 225 225 3:51 1:59
5 5 3 2 225 450 3:16 1:56
5 5 4 1 400 400 3:48 1:12
5 5 4 2 400 800 3:20 1:16
5 5 5 1 625 625 0:54

e Underpopulating the nodes leads to a small speedup in the cal-
culation of the screened Coulomb interaction, as it improves the
I/O bottleneck. As expected it has no noticable effect for the
calculation of the correlation energy.

e The parallelisation using PBLAS (mainly pzgemm) seems to give
very good speedup of the code. Figure 1 shows the speedup of
the correlation code as function of number of MPI tasks.

4.1 Remaining bottlenecks

Despite the parallel I/O implementation with HDF5, writing the screened
Coulomb interaction remains the main bottleneck. The main reasons
for that are:

e the file size:
for a 32 atom GaAs supercell, the screened Coulomb file was 215
GB. A 96 atom cell will require a file 27 times larger.

e individual file access:
In general, the number of q- and k-points is incommensurate

Figure 1: Speedup (inverse run time) of the correlation code as function of
MPI tasks used. The two different sets of data correspond to the runs with
and without underpopulating the nodes. A linear slope would correspond to
ideal scaling.

to/t

0 100 200 300 400 500 600 700

with the number of MPI groups, used for parallelizing the cor-
responding groups.

In order to allow for systems larger than the current ones, it is
essential to avoid the huge file containing the screened Coulomb in-
teraction all together. It is possible to revert the loop structure and
furthermore, combine the two codes calculating the screened Coulomb
interaction, and the self energy into one code. In this way, the data
for one q,w pair have to be kept in memory at a given time.

However, this requires more fundamental changes to the code,
which have not been possible in the limited time of this eCSE project.

The PBLAS and HDF5 modifications of the code, performed dur-
ing this eCSE will help the planned changes, and are necessary also
for the planned “inverted loop structure”.

10

5 Outlook

With the HDF5 and PBLAS implementations in place, it will be pos-
sible to continue the planned changes as part of the CCP9 flagship
project (supported by the STFC through the SLA core support), or
through another eCSE proposal.

The modified version of the code is currently available in a separate
branch of the git repository [need a link here]. After some more testing
it will be merged into the master branch.

Acknowledgements

This work was funded under the embedded CSE programme or the
ARCHER UK National Supercomputing Service (http://www.archer.ac.uk]).

References

[1] T. Kotani and M. van Schilfgaarde. All-electron GW approxi-
mation with the mixed basis expansion based on the full-potential
LMTO method. Sol. State Comm., 121:461, 2002.

[2] Takao Kotani, Mark van Schilfgaarde, and Sergey V. Faleev.
Quasiparticle self-consistent GW method: A basis for the
independent-particle approximation. Phys. Rev. B, 76:165106, 2007.

[3] The code is hosted on http://bitbucket/lmto/

11

http://www.archer.ac.uk
http://bitbucket/lmto/

	Introduction
	Previous work
	Current work
	Global parallelization strategy
	Parsing the input file
	Parallel I/O
	Memory distribution

	Results and Conclusion
	Remaining bottlenecks

	Outlook

