
SAFE
ARCHER champions

Stephen Booth, USL

Introduction
• Aim of this session is to interactive

•  Intend to use the slides an required rather than presenting all of
them.

• Who here uses SAFE
•  Questions?
•  Comments?
•  Requests?
•  Discussion?

I have slides on
• SAFE overview
• Registration and account requests
• Reporting and accounting
• Project management
•  Integration with the HPC systems
• A Pathfinder project for national AAAI

The SAFE
•  The SAFE a the web-base portal that provides an

interface between us and our users. It also acts as a tool
for project managers to manage their project resources.

• Performs the following functions:
•  Registration and user database.
•  Accounting and report generation
•  Self-service operations
•  Devolved project management
•  Helpdesk

History
• Been under continual development since 2002
• Used for various HPC services

•  HPCx
•  HECToR
•  ARCHER
•  DIRAC
•  EPCC local services
•  HARTREE

• Recently finished a major rework of the navigation model

New V4 interface

Documentation
•  There is a SAFE guide on the ARCHER web-site
•  http://www.archer.ac.uk/documentation/safe-guide/
• Covers both user and project manager operations
• Click on the video links for you-tube videos

demonstrations!

Registration

User details and registration
• We don’t know our users in advance.
• Users self-register with the SAFE (providing appropriate

details)
•  SAFE verifies the email address as part of registration by emailing

completion URL. User sets initial password.
•  Then apply to join a project, requesting an ARCHER account.
•  Project manager approves/declines the request.
•  Account is created and user retrieves initial ARCHER password via

safe.

• Users can bind their Institutional login identity (Shibboleth/
UKAMF) to their SAFE account.

Login Accounts
• Users request login accounts on ARCHER via the SAFE

•  ARCHER policy to not allow accounts in multiple projects though
SAFE supports this.

•  Standard operations also supported via SAFE.
•  Password resets
•  Package group requests
•  Etc.

•  Users can upload SSH public-keys to SAFE
•  SAFE verifies minimum key-length
•  Some DIRAC hosts don’t support passwords and require a public-key.

SAFE provides capture and dissemination of these.

Account requests
• Users get to choose their account-name

•  Plug-in policies can restrict possible names or auto-generate
Username.

•  DIRAC use a global auto-generated dirac-id.
•  Same id on all systems
•  Reserved space of usernames for shared-use machines.

•  System team can override this when creating account.
• SAFE also suggests UID for account

•  Chosen from a reserved range.
•  SAFE reserves UIDs per person in case FS mounts added later.

• Once created user can view account details and request
standard actions.

Reporting and Accounting

Service reporting and accounting
• All usage and allocation data is held in the SAFE.

•  Batch job information
•  Historical disk-usage

• Powerful reporting engine can generate reports based on
all information the SAFE holds
•  Project and user meta-data is remarkably useful.

•  % of use by institution, nationality gender career-stage etc.

Cross system reporting
• Reporting engine can combine data from different

sources.
• Examples:

•  On ARCHER reservation data and job-data can be merged.
•  Allocation data and usage data can be viewed at the same time.
•  On DIRAC data from different systems can be merged.

• Cross system reporting only makes sense where common
units are used CPUhs may not be equivalent on different
systems.
•  Normally use AU (allocation units)

Properties
• Reporting system sees data-records as collections of

named properties
•  Database fields
•  Derived properties, Expressions of other properties

•  E.g. SlowDown = (EndTime–StartTime)/ (EndTime-SubmitTime)
•  Includes constants
•  Includes de-reference to other tables UserID[PersonID][InstitutionID]

•  Usually store properties corresponding to original data and derive
abstract properties for reporting.

Reports
• Reports are written in a report generation language

•  Report definitions are XML documents
•  Syntax for

•  Charts/Tables
•  Access-Control
•  Record-Filtering
•  Etc.

• Accounting sub-system is independent of budget sub-
system
•  Can just use SAFE reporting engine e.g. with fair-share or

externally managed budgets.
•  General enough to handle other use cases like data-transfer logs.

Accounting Data uploads
• Usage data needs to be uploaded to SAFE to record use.
• SAFE does not mandate a particular data-format, aim is to

upload the data in native format.
•  Also aim to keep DB format as close to original data as possible

• Plug-in parsers for most common batch systems.
• Policy plug-ins generate charge values and other side-

effects
•  Generating aggregated records
•  Decrementing allocations
•  Associating jobs with known software packages
•  Etc.

Policies
• Policies are important for local variations

•  Charging policies differ
•  Charge by node or by CPU-time
•  Priority queues
•  Discount policies.

•  Cross linking data from different logfile.
•  Constructing aggregate records to speed report generation
•  The same tools are used differently by different services use so

have to customise the interpretation of data.

Reference properties
• Properties are strongly typed:

•  Number, String, DateTime, Reference

• Reference properties are pointers to records in other
tables.

• Property expressions can access properties on the
remote record.
•  Charge = Residency * Machine[ChargeRate]
•  When mapped to SQL this implies a JOIN to the remote table.

09/09/16 Service DATA from the SAFE 21

SQL mapping
•  Property expressions need to be mapped to SQL fragments.
•  Internally expressions stored as abstract-syntax-tree objects.

•  Visitor pattern used to implement operations.
•  Evaluate expressions
•  Create SQLValue
•  Create SQLExpression

•  SQL fragments represented as SQLValue objects. Implement
methods to:
•  Add fragment to SQL statement
•  Create value from java ResultSet
•  Optionally provide SQLFilter to modify FROM and WHERE SQL

clauses.

09/09/16 22

SQLExpressions
• Sub-type of SQLValue

•  SQL fragment is a single expression equivalent to value produced.
•  Can be combined at SQL level.

• Required for SQL reduction operations
•  MIN, MAX, SUM etc.

•  In other contexts SQLValue is sufficient

09/09/16 23

Non SQL operations
• Also possible to implement properties using Java

fragments with no SQL equivalent.
• Reporting code falls-back to iterating over objects.
• Only needed in special circumstances.

•  Elapsed working hours for helpdesk reporting.

09/09/16 24

Time mapping
• SAFE provides special support for records that overlap

ends of the time periods.
•  For long time periods it is sufficient to select records based on a

single time property (e.g. completion time of job).
•  For short time periods (comparable or shorter than the job length)

this gives a distorted view of the data.
•  This is a particular problem for graphs showing evolution against

time as each point on the graph corresponds to a short time
period.

09/09/16 25

Naïve Time graphs
•  If we plotting records that finished in a time period.

•  Graph depends strongly on choice of plot periods.
•  Graph is also difficult to interpret

•  Example shows average size of job completing in each period.

09/09/16 26

Weighting functions
• Records that overlap ends of time period need to be

scaled.
•  Two distinct types of scaling are needed depending on

nature of property being.
•  Accumulating properties

•  Values that accumulate during record
•  CPU-Time,
•  Wall-clock
•  Charge

•  Instantaneous properties
•  Values that can be measured at a particular instant in time

•  CPUs
•  Memory used

09/09/16 27

Accumulating properties
• Need to be weighted by fraction of record that overlaps

with the period
​𝑉↓𝑝𝑒𝑟𝑖𝑜𝑑 = ​𝑉↓𝑟𝑒𝑐𝑜𝑟𝑑 ​​𝑙↓𝑜𝑣𝑒𝑟𝑙𝑎𝑝 /​𝑙↓𝑟𝑒𝑐𝑜𝑟𝑑  
• Values may be summed to give value accumulated in

period.
• Divide by period length to give an average rate.

09/09/16 28

Instantaneous properties
• Value at any given instant is the sum of values from

records that cross that point in time.
• Representative value for the period is the time average
• Weight by fraction of period that is overlapped and sum

over records.
​𝑉↓𝑝𝑒𝑟𝑖𝑜𝑑 = ​𝑉↓𝑟𝑒𝑐𝑜𝑟𝑑 ​​𝑙↓𝑜𝑣𝑒𝑟𝑙𝑎𝑝 /​𝑙↓𝑝𝑒𝑟𝑖𝑜𝑑  
• Can turn instantaneous property into accumulating by

multiplying by record length
•  Time average is the same as the rate calculated from this property.

09/09/16 29

Time graphs
•  Time averaged CPU plot

•  At this resolution many jobs cross multiple time periods.
•  Different division into plot periods would give broadly similar plot.

09/09/16 Service DATA from the SAFE 30

Time bounds
• Need to choose two time valued properties to denote start

and end of record.
•  This may be different depending on quantity.
• CPUs used would use job-start and job-end
•  Jobs waiting would use job-submit and job-start

09/09/16 Service DATA from the SAFE 31

Advanced use cases
•  Recently we have been exploring importing mpi-job-launcher

data (ALPS logs on Cray systems)
•  Essentially syslog event data

•  Process start-end events come from 2 different places and result in 2
different log-lines

•  SAFE uses an “incremental” parser to merge these into a
single database record.
•  First line results in partial record
•  Data from second line merged to produce final data.

•  Policy links these back to the PBS database record for the job.
•  Some users run many mpi jobs within a single batch job.

Executable data
• Alps logs contain the aprun command line
•  2nd Policy performs nested parse of this to generate

executable names.
•  3rd Policy links this to known applications using regular-

expressions.
• End result is data on;

•  Node utilisation within batch jobs
•  Application usage data
•  Thread binding information

Memory and power
•  The ALPS system sits between PBS and the execution

nodes
•  On Cray systems PBS does not know memory and energy usage

of back-end nodes.
•  However alps does have its own monitoring plug-ins

• Another log-file to merge and link in the database.

Project Management

Project management
• We allocate resources to projects. Membership and

resource management within a project is devolved to
project managers via the SAFE.
•  Approve/reject membership requests
•  Create new groups/budgets
•  View and Set group and user disk quotas.
•  Allocate CPU-time allocations to budgets.

•  Time is allocated to projects in time-windows
•  Managers can move this allocation between budgets
•  Time un-used at the end of the window is lost.

Groups
•  Internal project management is expressed in terms of

groups.
•  These can be Unix groups (allocating disk space)
•  These can be Budgets (allocating cpu/node time)
•  Or they can be both.

• Project managers control the creation and membership of
groups through the SAFE.
•  For per-user allocations make a group for each user.

• Some management operations can be delegated to
group-managers.

Disk space management
• Safe can manage disk allocations
• Project managers can re-allocate disk quota between

groups (up to overall project limit)
• Can also manage user quotas thought these are

unconstrained
• Changes requested via ticket interface
• Current usage and quota values uploaded at regular

intervals
•  Values available to users
•  SAFE keeps history tables so disk usage history can be shown in

reports.

Guest Budgets
• On ARCHER we don’t allow users to belong to more than

one project.
•  This is to keep disk resources clearly associated with a single

project.
• Sometimes a user needs access to time resources from

multiple projects.
• Users from outside a project can be given access to guest

budgets.
•  Only a Time-budget never a Unix-group.

• User applies for access. Manager of the owning project
approves/rejects access.

Package Groups
• Package Groups are Unix groups controlling access to

software packages.
•  Only a Unix-group never a Time-budget.

• Requested in a similar way to guest-budgets
•  Approvals handled by the helpdesk.

Systems interface

Helpdesk
• ARCHER helpdesk is also part of the SAFE.

•  All users automatically have access to helpdesk web-interface
•  Single unified view of contact details, projects etc.
•  Automated self-service operations can be integrated with the

helpdesk.

• Most traffic via Email so optimised for this use case.
• Planning a major overhaul of this code soon.

Ticket interface
•  The SAFE requests machine changes via “ChangeTickets”

•  These are independent of the helpdesk code but if helpdesk is enabled
automatic tracking helpdesk tickets are created.

•  Implement a set of standard operations
•  CreateAccount, NewPassword, AddToGroup, CreateDirectory etc.

•  Can be viewed via a web-interface
•  Also downloadable in XML or JSON for automated scripting.

•  Tickets handled by an action plug-in.
•  Default action to email system administrator.

•  Action performed manually then completed via web-form
•  Can fully-automate implementation via scripting action (script consumes

XML/JSON description of ticket)
•  We usually keep humans in the loop but script the implementation avoiding data

transcription problems.

Completing tickets
•  Ticket completion allows information to be passed back to

the SAFE
•  Can refuse tickets or override SAFE selected values for Username

UID GID etc.

•  Tickets can be routed to different support groups
depending on service machine.

Resource limits
• SAFE can manage CPU-time allocations
• Every time allocation state changes SAFE writes a new

version of the “budget-files”
•  Accounting data is uploaded
•  Time moved between budgets
•  Account created of added to budget

• Simple format files giving current state of budget and budget
ACL.
•  Need to add hook to batch system to enforce these rules.
•  Can also pull current budget values via http

Enforcement
• Batch system has to enforce SAFE access rules when

using devolved budget management.
•  Usually this means the user has to provide a budget-code for each

job
•  Or force users to only have access to one budget.

• Normally process accounting logs once a day.
•  Time window for users to exceed allocation.
•  SAFE records this as an overdraft. Project needs to pay-off excess

to unlock budget.

• Reporting engine can still be used without enforcement.

Machines at multiple sites
•  For DIRAC we used a single SAFE instance to mange

multiple geographically distributed sites.
•  Many of these were shared machines with other non-dirac users as

well.
•  Initially kept things simple:

•  One account per user per site.
•  One active project at any time.
•  No disk space reporting/management.
•  No project sub-groups.

• As service evolved more advanced features were adopted
by some sites.

Implementation
• SAFE is a J2EE servlet application written in java (version

1.7+)
•  Usually run under tomcat (version 7+)
•  Usually use apache httpd as a front-end mod_jk or mod_proxy_ajp
•  Mysql database back-end
•  Needs SMTP mail-server to send email

• Can be configured to integrate with external
authentication mechanisms (pretty much anything
supported by apache)

• SAFE designed to work without requiring browser side
scripting. E.g. using html5 input types

Installing SAFE
• Basic install is straightforward

•  SAFE will bootstrap into empty database.

• However no two HPC services are run exactly the same
•  Even services run by a single organisation can be different as

circumstances and technologies change
•  SAFE contains a large number of options and switches for the

variations we have had over 14+ years
•  Still plenty of (perfectly reasonable) options we have not explored.
•  Always expect some tailoring to be required.

A pathfinder project for a National AAAI
• Recently Grant started 1 Sept
•  Looking at developing an Infrastructure for:

•  Authentication
•  Authorization
•  Accounting

• SAFE is a part of this project.

The user problem
•  It is quite common for users to use many different online

facilities.
•  Most institutions provide good AAA integration for services within

that institution
•  Single-sign-on common identities service integration etc.
•  This often extends to 3rd party services bought directly by the institution

•  Big shared facilities have to set up their own AAA solutions
•  Very large distributed research collaborations may introduce their

own Infrastructures

• Many “normal” users find themselves having to deal with
multiple systems.

The project problem
• Projects can have a similar problem when it comes to

management interfaces
•  Unless they are small enough to use a single facility or large

enough to mandate the complete software stack.

Authentication (AuthN)
•  The user proves their identity to a service.

•  May be a partial identifier (information about the user not which
user)

•  To support Single-Sign-On (SSO) this is best provided by
a trusted third party the IDentity Provider (IDP).
•  Trusted by the user and any service they want to use.
•  Each user wants to use a single IDP though all users do not have

to use the same one.
• Probably the best choice the users home institution

•  Best position to confirm identity, manage credential resets, most
likely to know when a user changes job.

•  Requires a federation of institutional IDPs

Authorization (AuthZ)
•  The project confirms to the service that the requested

resource access should be allowed.
•  Though this is normally takes place as a user requesting access to

a resource; the resources were typically bought or granted to an
organisation (the project) and the interaction is ultimately between
the project and the service.

•  In most classic AAAI models authorization rules are
expressed in terms of user-attributes provided by the IDP
during authentication.
•  This is a problem if the project and the IDP are not the same.

Accounting
•  The service provides resource usage information to the

project.
• Accounting information may be used for:

•  Auditing – ensuring the resource was used appropriately.
•  Billing – generating a charge for variable-cost services.

State of the ART
• We have good existing systems for:

•  Web based AuthN UKAMF/Shibboleth
•  Wireless access point AuthN Eduroam

• Most UK institutions run IDPs for these.
•  Usually used for stateless services with a high degree of

anonymization. Services typically get an opaque anonymous
handle to identify a user. Different services can get different
handles for the same user.

•  Not very useful for cross institutional projects as Independent
project level attribute providers not very well supported.

Moonshot
•  JISC developed technology
• Adapts the RADIUS protocol used by eduroam to other

use-cases (web-access and ssh)
•  Universities already run radius servers C
•  Needs extra software client-side D
•  Not many moonshot IDPs up and running yet D

SAFE + Moonshot
• We will be looking at how we can integrate SAFE and

Moonshot
•  Allow users to log-in to the SAFE using moonshot
•  Use the SAFE as a moonshot IDP for users without a local IDP
•  Having the SAFE add additional user-attributes while still

authenticating against the users prefered IDP.

• Not looking to mandate a solution
•  Looking for an architecture where multiple independent

implementations can co-exist.

